以太西无烟煤为前驱体,NaOH为活化剂制备电化学电容器电极材料.采用N2吸附法及电化学测试对活性炭的孔结构和电化学性能进行了表征.在1mol/L (C2H5)4NBF4/碳酸丙烯酯有机电解液体系中,研究了孔结构对活性炭电极材料的电化学性能的影响.结果表明:以NaOH为活化剂可制备出比表面积943mol/L~2479mol/L、比电容57F/g~167F/g的活性炭电极材料.活性炭电极材料的比电容不仅取决比表面积,而且与活性炭的孔径分布有关.孔径为2nm~3nm的中孔的存在可以有效降低电解液的扩散阻力,提高电极材料比表面积的利用率,从而使电容器的电化学性能得到增强.
Anthracite was activated by NaOH to prepare high-performance activated carbons as electrodes for electric double-layer capacitors. The porous structure and electrochemical characteristics of the carbons were investigated by nitrogen sorption and electrochemical methods. The effect of pore structure on the electrochemical performance of the carbons in a 1 mol/L (C2H5 )4NBF4/propylene carbonate (PC) electrolyte was investigated. The as-prepared activated carbons exhibit large surface areas (943-2479m2/g) and high-specific capacitances (57-167F/g). The specific capacitance depends not only on the surface area, but also on the pore size distribution ( PSD) of the carbon. Pores with a size of 2-3 nm are crucial for the ions to penetrate inside them for the (C2H5 )4NBF4/PC electrolyte. Specific capacitance is higher and impedance is lower for the sample with a wider PSD due to the fact that electrolyte ions could easily enter the pores.
参考文献
[1] | Conway B E.Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications[M].Kluwer Academic/Plenum Publishers:New York,1999:1-2. |
[2] | 戴贵平,刘敏,王茂章,成会明.电化学电容器中炭电极的研究及开发I. 电化学电容器[J].新型炭材料,2002(01):71-79. |
[3] | 刘希邈,詹亮,滕娜,杨登莲,曾小春,张睿,凌立成.超级电容器用沥青焦基活性炭的制备及其电化学性能[J].新型炭材料,2006(01):48-53. |
[4] | 孟庆函,李开喜,宋燕,吕春祥,凌立成.石油焦基活性炭电极电容特性研究[J].新型炭材料,2001(04):18-21,26. |
[5] | 刘希邈,张睿,詹亮,龙东辉,乔文明,杨俊和,凌立成.炭气凝胶/活性炭复合电极在有机电解液体系双电层电容器中的阻抗[J].新型炭材料,2007(02):153-158. |
[6] | Y.Inoue .Electric double layer capacitor and its energy storage technology[J].機能材料,1999(8):50-58. |
[7] | Nishino A .Capacitors:operating principles,current market and technical trends[J].Journal of Power Sources,1996,60(02):137-147. |
[8] | John M.Andresen;Caroline E.Burgess;Peter J.Pappano;Harold H.Schobert .New directions for non-fuel uses of anthracites[J].Fuel Processing Technology,2004(12):1373-1392. |
[9] | Perrin, A;Celzard, A;Albiniak, A;Jasienko-Halat, M;Mareche, JF;Furdin, G .NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability[J].Microporous and Mesoporous Materials,2005(1/3):31-40. |
[10] | S.B.Lyubchik;R.Benoit;F.Beguin .Influence of chemical modification of anthracite on the porosity of the resulting activated carbons[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(8):1287-1294. |
[11] | M.A. Lillo-Rodenas;D. Cazorla-Amoros;A. Linares-Solano .Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(2):267-275. |
[12] | M.A.Lillo-Rodenas;D.Lozano-Castello;D.Cazorla-Amoros;A.Linares-Solano .Preparation of activated carbons from Spanish anthracite (II.Activation by NaOH)[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(5):751-759. |
[13] | D. Lozano-Castello;D. Cazorla-Amoros;A. Linares-Solano .Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(9):1765-1775. |
[14] | 刘希邈 .双电层电容器活性炭电极材料的电化学性能研究[D].华东理工大学,2007. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%