欢迎登录材料期刊网

材料期刊网

高级检索

采用分子动力学模拟研究了单壁碳纳米管的力学特性与其长度、直径及手性的关系.在施加拉伸或压缩载荷时,不同直径的单壁碳纳米管表现出明确的力学性能变化.锯齿型和扶手椅型碳纳米管的拉伸性能与其长度无关,而对于手性碳纳米管来说则稍有变化.所有类型碳纳米管的压缩特性,主要是刚度和临界压应力均随碳纳米管长度的变化而改变.断裂模式因结构不同而异,屈服过程产生纽结、波浪状结构、柱状屈曲、弯曲和扭曲等.

The dependence of the mechanical characteristics of single-walled carbon nanotubes on their length,radius,and chirality is investigated by molecular dynamics simulation.The observed changes in the mechanical properties with radii are compared with the results reported by other authors under both tensile and compressive loading.The tensile properties of zigzag and armchair CNTs are not dependent on their lengths.Slight changes in the mechanical properties with chirality are also reported.However,their compressive properties,primarily their stiffness and critical compressive stress,vary with length for all types of CNTs.The fracture patterns show different modes in each case.Buckling produces kinks,wavy structures,shell-wall buckling,columnar buckling,bending,and twisting.

参考文献

[1] Yakobson B I;Brabec C J;Bernholc J .Nanomechanics of car bon tubes:instabilities beyond linear response[J].Physical Review Letters,1996,76:2511-2514.
[2] Liew K M;Wong C H;He X Q et al.Nanomechanics of single and multiwalled carbon nanotubes[J].Physical Review B,2004,69:115429.
[3] Belyytschko T .Atomistic simulation of nanotube fracture[J].Physical Review B,2002,65:235430.
[4] Batra RC;Sears A .Uniform radial expansion/contraction of carbon nanotubes and their transverse elastic moduli[J].Modelling and simulation in materials science and engineering,2007(8):835-844.
[5] Coluci VR;Pugno NM;Dantas SO;Sgalvao D;Jorio A .Atomistic simulations of the mechanical properties of 'super' carbon nanotubes[J].Nanotechnology,2007(33):35702-1-35702-7-0.
[6] Dereli G.;Ozdogan C. .Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain - art. no. 035416[J].Physical review, B. Condensed matter and materials physics,2003(3):5416-0.
[7] An assessment of the science and technology of carbon nanotube-based fibers and composites[J].Composites science and technology,2010(1):1.
[8] Yu MF.;Arepalli S.;Ruoff RS.;Files BS. .Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties[J].Physical review letters,2000(24):5552-5555.
[9] Krishnan A.;Ebbesen TW.;Yianilos PN.;Treacy MMJ.;Dujardin E. .Young's modulus of single-walled nanotubes[J].Physical Review.B.Condensed Matter,1998(20):14013-14019.
[10] Wong EW. Sheehan PE. Lieber CM. .NANOBEAM MECHANICS - ELASTICITY, STRENGTH, AND TOUGHNESS OF NANORODS AND NANOTUBES[J].Science,1997(5334):1971-1975.
[11] Treacy M M J;Ebbesen T W;Gibson J M .Exceptionally high Young' s modulus observed for individual carbon nanotubes[J].Nature,1996,381:678-680.
[12] FALVO M. R.;CLARY G. J.;TAYLOR R. M.;CHI V.;BROOKS F. P.;WASHBURN S.;SUPERFINE R. .BENDING AND BUCKLING OF CARBON NANOTUBES UNDER LARGE STRAIN[J].Nature,1997(6651):582-584.
[13] Mielke SL;Troya D;Zhang S;Li JL;Xiao SP;Car R;Ruoff RS;Schatz GC;Belytschko T .The role of vacancy defects and holes in the fracture of carbon nanotubes[J].Chemical Physics Letters,2004(4-6):413-420.
[14] Hou WY;Xiao SP .Mechanical behaviors of carbon nanotubes with randomly located vacancy defects[J].Journal of nanoscience and nanotechnology,2007(12):4478-4485.
[15] Chandra N;Namilae S;Shet C .Local elastic properties of carbon nanotubes in the presence of stone-wales defects[J].Physical Review B,2004,69:094101.
[16] Lu Q;Bhattacharya B .Effect of randomly occurring StoneWales defects on mechanical properties of carbon nanotubes using atomistic simulation[J].Nanotechnology,2005,16:5550-5566.
[17] J.R. Xiao;J. Staniszewski;J.W. Gillespie Jr. .Fracture And Progressive Failure Of Defective Graphene Sheets And Carbon Nanotubes[J].Composite Structures,2009(4):602-609.
[18] Talukdar K;Mitra A K .Comparative MD simulation study on the mechanical properties of a zigzag single walled carbon nanotube in the presence of Stone-Thrower-Wales defects[J].Computers and Structures,2010,92:1701-1705.
[19] Cao G;Chen X .The effect of the displacement increment on the axial compressive buckling behaviors of single-walled carbon nanotubes[J].Nanotechnology,2006,17:3844-3855.
[20] C.-L. Zhang;H.-S. Shen .Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(13):2608-2616.
[21] Liew KM;Wong CH;Tan MJ .Twisting effects of carbon nanotube bundles subjected to axial compression and tension[J].Journal of Applied Physics,2006(11):14312-1-14312-7-0.
[22] Hao Xin;Qiang Han;Xiao-Hu Yao .Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes[J].Carbon: An International Journal Sponsored by the American Carbon Society,2007(13):2486-2495.
[23] Y.D.Kuang;X.Q.He;C.Y.Chen .Buckling of functionalized single-walled nanotubes under axial compression[J].Carbon: An International Journal Sponsored by the American Carbon Society,2009(1):279-285.
[24] Cong Feng;K.M. Lieu .A molecular mechanics analysis of the buckling behavior of carbon nanorings under tension[J].Carbon,2009(15):3508-3514.
[25] Lu JP .Elastic properties of carbon nanotubes and nanoropes[J].Physical review letters,1997(7):1297-1300.
[26] Robertson D H;Brenner D W;Mintmire J W .Energetics of nanoscale graphitic tubules[J].Physical Review B,1992,45:12592-12595.
[27] Wang LF;Zheng QS;Liu JZ;Jiang Q .Size dependence of the thin-shell model for carbon nanotubes[J].Physical review letters,2005(10):5501-1-5501-4-0.
[28] Xiao S;Hou W .Studies of size effects on carbon nanotubes' mechanical properties by using different potential functions,fullerenes[J].Nanotubes and Carbon Nanostructures,2006,14:9-16.
[29] Chang TC;Geng JY;Guo XM .Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model[J].Proceedings of the Royal Society. Mathematical, physical and engineering sciences,2006(2072):2523-2540.
[30] Brenner DW.;Shenderova OA.;Harrison JA.;Stuart SJ.;Ni B.;Sinnott SB. .A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[J].Journal of Physics. Condensed Matter,2002(4):783-802.
[31] Berendsen H J C;Postma J P M;van Gunsteren W F et al.Molecular dynamics with coupling to an external bath[J].Journal of Chemical Physics,1984,81:3684-3690.
[32] Philippe Poncharal;Z.L. Wang;Daniel Ugarte .Electrostatic deflections and electromechanical resonances of carbon nanotubes[J].Science,1999(5407):1513-1516.
[33] Hernandez E.;Bernier P.;Rubio A.;Goze C. .Elastic properties of C and BxCyNz composite nanotubes[J].Physical review letters,1998(20):4502-4505.
[34] Ozaki T.;Mitani T.;Iwasa Y. .Stiffness of single-walled carbon nanotubes under large strain[J].Physical review letters,2000(8):1712-1715.
[35] Troya D.;Mielke SL.;Schatz GC. .Carbon nanotube fracture - differences between quantum mechanical mechanisms and those of empirical potentials[J].Chemical Physics Letters,2003(1/2):133-141.
[36] Demczyk BG.;Wang YM.;Cumings J.;Hetman M.;Han W.;Zettl A.;Ritchie RO. .Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):173-178.
[37] Ogata S.;Shibutani Y. .Ideal tensile strength and band gap of single-walled carbon nanotubes - art. no. 165409[J].Physical review, B. Condensed matter and materials physics,2003(16):5409-0.
[38] Stewart J J P .Optimization of parameters for semi-empirical methods I-method[J].Journal of Computational Chemistry,1989,10:209-220.
[39] Wang Y;Wang XX;Ni XG;Wu HA .Simulation of the elastic response and the bucIrding modes of single-walled carbon nanotubes[J].Computational Materials Science,2005(2):141-146.
[40] Bao WX;Zhu CC;Cui WZ .Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics[J].Physica, B. Condensed Matter,2004(1/4):156-163.
[41] Zhang PH.;Crespi VH.;Lammert PE. .Plastic deformations of carbon nanotubes[J].Physical review letters,1998(24):5346-5349.
[42] Sears A;Batra RC .Buckling of multiwalled carbon nanotubes under axial compression[J].Physical review, B. Condensed matter and materials physics,2006(8):5410-1-5410-11-0.
[43] Srivastava D.;Cho KJ.;Menon M. .Nanoplasticity of single-wall carbon nanotubes under uniaxial compression[J].Physical review letters,1999(15):2973-2976.
[44] Lourie O.;Wagner HD.;Cox DM. .Buckling and collapse of embedded carbon nanotubes[J].Physical review letters,1998(8):1638-1641.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%