以中间相沥青和添加中间相炭微球的沥青为原料,调整发泡压力和发泡湿度制备沥青泡沫,经1273K炭化和2973 K石墨化,制备了高密度石墨泡沫.为了进一步提高石墨泡沫的密度,采用573 K的沥青反复浸渍炭化未添加中间相炭微球的沥青在1273K下所制的泡沫炭,再经2973K石墨化获得增密度后的石墨泡沫.而后制备了相应石墨泡沫/石蜡复合材料.研究了石墨泡沫热物理性能的影响因素和石墨泡沫/石蜡复合材料的热行为.研究表明:沥青组分、发泡温度和发泡压力决定了石墨泡沫的结构和热物理性能,而石墨泡沫的热导率决定了复合材料的热行为.与石蜡相比,石墨泡沫/石蜡复合材料的热扩散系数提高了768至1588倍.石墨泡沫/石蜡复合材料的潜热与石蜡的质量分数成正比.该复合材料是快速响应电子散热材料的良好选择.
High-density graphite foams (GFs) were prepared from mesophase pitch with or without mesocarbon microbeads at different foaming temperatures and pressures,followed by carbonization and graphitization at 1273 and 2973 K,respectively.In one case,pitch was repeatedly infiltrated into the graphitized foam at 573K followed by carbonization to increase its density.Paraffin was infiltrated into the GFs to form GF/paraffin composites.Factors determining the thermophysical properties of the GFs and thermal behavior of the GF/paraffin composites were investigated.The microstructure and thermophysical properties of the foams were found to be greatly influenced by the pitch fraction,foaming temperature and foaming pressure.The thermal conductivity of the foams determines the thermal behavior of the GF/paraffin composites.The thermal diffusivity of the GF/paraffin composites investigated can be increased 768 to 1588-fold compared with that of paraffin.The latent heat of the composites has an almost linear relationship with the mass fraction of paraffin in the composites.The composites are suitable candidates for passive cooling of electronics.
参考文献
[1] | Anandan S S;Ramalingam V .Thermal management of electronics:A review of literature[J].Therm Sci,2008,12(02):5-26. |
[2] | Suresh V. Garimella .Advanpes in mesoscale thermal management technologies for microelectronics[J].Microelectronics journal,2006(11):1165-1185. |
[3] | K.Lafdi;O.Mesalhy;A.Elgafy .Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J].Carbon: An International Journal Sponsored by the American Carbon Society,2008(1):159-168. |
[4] | V. Shatikian;G. Ziskind;R. Letan .Numerical investigation of a PCM-based heat sink with internal fins[J].International Journal of Heat and Mass Transfer,2005(17):3689-3706. |
[5] | Atul Sharma;V.V. Tyagi;C.R. Chen;D. Buddhi .Review On Thermal Energy Storage With Phase Change Materials And Applications[J].Renewable & sustainable energy reviews,2009(2):318-345. |
[6] | Yajuan Zhong;Quangui Guo;Sizhong Li;Jingli Shi;ang Liu .Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2010(6):1011-1014. |
[7] | Xiang-Qi Wang;Christopher Yap;Arun S. Mujumdar .A parametric study of phase change material (PCM)-based heat sinks[J].International Journal of Thermal Sciences,2008(8):1055-1068. |
[8] | Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J].Solar Energy,2010(8):1402-1412. |
[9] | S.-T. Hong;D.R. Herling .Open-cell aluminum foams filled with phase change materials as compact heat sinks[J].Scripta materialia,2006(10):887-890. |
[10] | Sung-Tae Hong;Darrell R. Herling .Effects of Surface Area Density of Aluminum Foamson Thermal Conductivity of Aluminum Foam-Phase Change Material Composites[J].Advanced Engineering Materials,2007(7):554-557. |
[11] | Karaipekli A;Sari A;Kaygusuz K .Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage[J].ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS,2009,31(10):814-823. |
[12] | Lafdi K;Mesalhy O;Shaikh S .Experimental study on the influence of foam porosity and pore size on the melting of phase change materials[J].Journal of Applied Physics,2007(8):083549-1-083549-6-0. |
[13] | FukaiJ;KanouM;KodamaY et al.Thermalconductivityenhancement of energy storage media using carbon fibers[J].Energy Conversion and Management,2000,41(14):1543-1556. |
[14] | Mesalhy O;Lafdi K;Elgafy A .Carbon foam matrices saturated with PCM for thermal protection purposes[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(10):2080-2088. |
[15] | Fedden A D;Franke M E.Graphitized carbon foam with phase change material for thermal energy storage[A].,2006 |
[16] | Xavier Py;Regis Olives;Sylvain Mauran .Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J].International Journal of Heat and Mass Transfer,2001(14):2727-2737. |
[17] | Zhang Z G;Fang X M .Study on paraffin/expanded graphite composite phase change thermal energy storage material[J].Energy Conversion and Management,2006,47(03):303-310. |
[18] | Jose M. Marin;Belen Zalba;Luisa F. Cabeza;Harald Mehling .Improvement of a thermal energy storage using plates with paraffin-graphite composite[J].International Journal of Heat and Mass Transfer,2005(12):2561-2570. |
[19] | L. W. Wang;Z. Tamainot-Telto;S. J. Metcalf;R. E. Critoph;R. Z. Wang .Anisotropic thermal conductivity and permeability of compacted expanded natural graphite[J].Applied thermal engineering: Design, processes, equipment, economics,2010(13):1805-1811. |
[20] | Ahmet Sari;Ali Karaipekli .Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J].Applied thermal engineering: Design, processes, equipment, economics,2007(8-9):1271-1277. |
[21] | Klett J.;Romine E.;Walls C.;Burchell T.;Hardy R. .High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties[J].Carbon: An International Journal Sponsored by the American Carbon Society,2000(7):953-973. |
[22] | Song J L;Guo Q G;Gao X Q et al.Mierostrueture and thermophysical properties of graphite foam/glass composites[J].Carbon,2011,49(04):1479-1483. |
[23] | Jinliang Song;Quangui Guo;Xiaoqing Gao .Mo2C intermediate layers for the wetting and infiltration of graphite foams by liquid copper[J].Carbon: An International Journal Sponsored by the American Carbon Society,2011(10):3165-3170. |
[24] | Wang L;Zhao H F.Metal based composites and the theories and practices on its infdtration preparation[M].北京:冶金工业出版社,2005 |
[25] | Li S Z;Song Y Z;Song Y et al.Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch[J].Carbon,2007,45:20922097. |
[26] | 王成扬,姜卉,李鹏,郑嘉明.原生QI成核中间相炭微球的结构[J].新型炭材料,2000(04):9-12. |
[27] | Vrable D L;Gottschlich J M .Graphite foam/copper composite substrate for electronic cooling[R].AIAA Paper,2006. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%