欢迎登录材料期刊网

材料期刊网

高级检索

针对微脱黏测试建立细观力学模型,通过模拟纤维从树脂微滴中的拔出过程评价炭纤维增强双马树脂基复合材料的界面性能。为了深入理解湿热环境对复合材料界面性能的影响,通过微脱黏方法测试不同湿热环境条件下炭纤维增强双马树脂基复合材料的界面剪切强度。结果表明,湿热老化会导致界面剪切强度下降,吸湿达到饱和后界面剪切强度也会趋于稳定。在实验的基础上,基于内聚力界面单元建立脱黏过程的数值模型以表征复合材料的界面特性,评价实验参数与界面特性的关系。微脱黏模型还为宏观力学性能的数值分析提供包括界面相在内的必要的实验参数。微脱黏测试的有限元分析表明刮刀夹持位置、热残余应力以及湿热条件均会对界面应力分布产生影响。

Carbon fiber/bismaleimide composites have received increasing interest, owing to their excellent properties, especially their toughness under extreme working conditions. We established a micromechanical model for a finite element simulation of the micro-droplet test, which involves pulling a carbon fiber out of a bead of matrix using two moving knives acting on the bead as scrapers to quantify the interfacial properties of carbon fiber reinforced bismaleimide composites. The interfacial shear strength of carbon fiber/bismaleimide composites subjected to different hydrothermal environments was tested by micro-droplet method to illus-trate the impact of moisture absorption on their interfacial properties. Hydrothermal aging caused a reduction of interfacial shear strength, which leveled off when the immersion time in water exceeded 7 days at 71℃. A numerical simulation of the debonding process was performed based on the interface cohesive element damage model to simulate the interfacial properties of the composite and to determine the correlation between experimental parameters and interfacial properties. The simulation successfully provided es-sential parameters for numerical analysis of the macroscopic mechanical properties of the composite. Finite element analysis of the micro-droplet test revealed that the factors that influence the interfacial shear stress distribution are the position of the knives on the bead, thermal residual stress and hydrothermal treatment conditions.

参考文献

[1] Yanmei Li;John Miranda;Hung-Jue Sue .Hygrothermal diffusion behavior in bismaleimide resin[J].Polymer: The International Journal for the Science and Technology of Polymers,2001(18):7791-7799.
[2] Purnell P;Cain J;Itterbeeck P V et al.Service life modelling of fiber composites:a unified approach[J].Composites Science and Technology,2008,68(15-16):3330-3336.
[3] Jedidi J;Jacquemin F;Vautrin A .Accelerated hygrothermal cy-clical tests for carbon/epoxy laminates[J].COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING,2006,37(04):636-645.
[4] Favre J P;Merienne M C .Characterization of fibre/resin bond-ing in composites using a pull-out test[J].International Journal of Adhesion and Adhesives,1981,1:311-316.
[5] Penn L S;Lee S M .Interpretation of the force trace for Kevlar/epoxy single filament pull-out tests[J].Fibre Science and Tech-nology,1982,17(02):91-97.
[6] Gaur U;Miller B .Microbond method for determination of the shear strength of a fiber/resin interface:evaluation of experimen-tal parameters[J].Composites Science and Technology,1989,34(01):35-51.
[7] Day R J;Cauich Rodriges J V .Investigation of the microme-chanics of the microbond test[J].Composites Science and Tech-nology,1998,58(06):907-914.
[8] A.Wada;H.Fukuda .Evaluation of Fiber/Matrix Interfacial Shearing Properties by Means of Microbond Test and Finite Element Analysis[J].日本複合材料学会誌,2000(2):58-64.
[9] Mandell J F;Chen J H;McGarry F J .A microdebonding test for in situ assessment of fibre/matrix bond strength in composite ma-terials[J].International Journal of Adhesion and Adhesives,1980,1:40-44.
[10] Ho H;Drzal L T .Evaluation of interfacial mechanical proper-ties of fiber reinforced composites using the microindentation method[J].Composites Part A:Applied Science Manufactur-ing,1996,27(10):961-971.
[11] Herrera-Franco P J;Rao V;Drazal L T et al.Bond strength measurement in composites analysis of experimental techniques[J].Compos Engineering,1992,2(01):31-45.
[12] Wagner H D;Gallis H E;Wiesel E .Study of the interface in Kevlar 49-epoxy composites by means of microbond and frag-mentation tests:effects of materials and testing variables[J].Journal of Materials Science,1993,28(08):2238-2244.
[13] Ananth C R;Chandra N .Elevated temperature interfacial be-havior of MMCs:a computational study[J].Composites Part A:Applied Science and Manufacturing,1996,27(09):805-811.
[14] Pochirajua K V;Tandon G P;Paganob N J .Analyses of single fiber pushout considering interfacial friction and adhesion[J].Journal of the Mechanics and Physics of Solids,2001,49(10):2307-2338.
[15] Lin G.;Sottos NR.;Geubelle PH. .Simulation of fiber debonding with friction in a model composite pushout test[J].International Journal of Solids and Structures,2001(46/47):8547-8562.
[16] Chandra N.;Li H.;Shet C.;Ghonem H. .Some issues in the application of cohesive zone models for metal-ceramic interfaces[J].International Journal of Solids and Structures,2002(10):2827-2855.
[17] Gautier L;Mortaigne B;Bellenger V .Interface damage study of hydrothermally aged glass-fiber-reinforced polyester compos-ites[J].Composites Science and Technology,1999,59(16):2329-2337.
[18] E.C. Botelho;L.C. Pardini;M.C. Rezende .Evaluation of hygrothermal effects on the shear properties of Carall composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):292-301.
[19] Christos J. Tsenoglou;Sylvia Pavlldou;Constantine D. Papaspyrides .Evaluation of interfacial relaxation due to water absorption in fiber-polymer composites[J].Composites science and technology,2006(15):2855-2864.
[20] Wang Y;Hahn T H .AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjec-ted hygrothermal treatments[J].Composites Science and Tech-nology,2007,6(01):92-101.
[21] H. Guo;Y.D. Huang;L.H. Meng;L. Liu;D.P. Fan;D.X. Liu .Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water[J].Materials Letters,2009(17):1531-1534.
[22] Nishikawa, M;Okabe, T;Hemmi, K;Takeda, N .Micromechanical modeling of the microbond test to quantify the interfacial properties of fiber-reinforced composites[J].International Journal of Solids and Structures,2008(14/15):4098-4113.
[23] Song BH.;Tahhan R.;Springer J.;Bismarck A. .A generalized drop length-height method for determination of contact angle in drop-on-fiber systems[J].Journal of Colloid and Interface Science,1998(1):68-77.
[24] Carroll B J .The accurate measurement of contact angle,phase contact areas,drop volume and laplace excess pressure in drop-on-fiber systems[J].Journal of Colloid and Interface Science,1976,57:488-495.
[25] You, JH;Lutz, W;Gerger, H;Siddiq, A;Brendel, A;Hoschen, C;Schmauder, S .Fiber push-out study of a copper matrix composite with an engineered interface: Experiments and cohesive element simulation[J].International Journal of Solids and Structures,2009(25/26):4277-4286.
[26] J.T. Ash;W.M. Cross;D. Svalstad .Finite element evaluation of the microbond test: meniscus effect, interphase region, and vise angle[J].Composites science and technology,2003(5):641-651.
[27] Zhang B M;Yang Z;Sun X Y et al.A virtual experimental approach to estimate composites mechanical properties:Model-ing with an explicit finite element method[J].COMPUTATIONAL MATERIALS SCIENCE,2010,49(03):645-651.
[28] Yunfeng Luo;Yan Zhao;Yuexin Duan;Shanyi Du .Surface and wettability property analysis of CCF300 carbon fibers with different sizing or without sizing[J].Materials & design,2011(2):941-946.
[29] Nak-Sam Choi;Joo-Eon Park .Fiber/matrix interfacial shear strength measured by a quasi-disk microbond specimen[J].Composites science and technology,2009(10):1505-1515.
[30] Pei Sun;Yan Zhao;Yunfeng Luo;Lili Sun .Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J].Materials & design,2011(8/9):4341-4347.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%