欢迎登录材料期刊网

材料期刊网

高级检索

综述了石墨烯支撑三明治结构材料的可控合成及其在能量存储与转换中应用的研究进展.基于不同的微观结构,石墨烯支撑三明治结构的材料主要分为如下三类:石墨烯支撑的纳米粒子(0D),石墨烯支撑的纳米棒、纳米线及纳米带(1D),石墨烯支撑的纳米片(2D).在这些复合材料中,石墨烯与相应功能材料间本征不相容的问题不仅得到有效解决,而且石墨烯可以作为电子传输的快速通道,有利于其能量存储与转换过程.本文为石墨烯或者类石墨烯材料支撑三明治结构复合材料的设计与合成提供了思路,这种具有特定结构的材料潜在广泛应用于催化、传感器、能量存储与转换等领域.

This paper reviews recent progress on the controllable synthesis of sandwich-like graphene-supported structures for ener-gy storage and conversion by harnessing the two-dimensional structure of graphene. These structures could be divided into three ma-jor categories: graphene-supported nanoparticles (0D), graphene-supported nanorods, nanowires or nanoribbons (1D), and gra-phene-supported nanoplates (2D). In these structures, the intrinsic incompatibility between graphene and the functional materials was circumvented by modifying or functionalizing the graphene or graphene oxide. A graphene intermediate provides a fast electron-transfer pathway for energy storage and conversion. It also gives a way to design and fabricate sandwich-like graphene and even gra-phene-analogue-supported functional materials with well-defined structures for broad applications such as catalysts, sensors, energy storage and conversion.

参考文献

[1] Yoo, E;Okata, T;Akita, T;Kohyama, M;Nakamura, J;Honma, I.Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface[J].Nano letters,20096(6):2255-2259.
[2] Paek SM;Yoo E;Honma I.Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure[J].Nano letters,20091(1):72-75.
[3] Wu, Z.-S.;Ren, W.;Wen, L.;Gao, L.;Zhao, J.;Chen, Z.;Zhou, G.;Li, F.;Cheng, H.-M..Graphene anchored with Co_3O_4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J].ACS nano,20106(6):3187-3194.
[4] Shubin Yang;Xinliang Feng;Sorin Ivanovici.Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage[J].Angewandte Chemie,201045(45):8408-8411.
[5] Wang, H.;Cui, L.-F.;Yang, Y.;Sanchez Casalongue, H.;Robinson, J.T.;Liang, Y.;Cui, Y.;Dai, H..Mn_3O_4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J].Journal of the American Chemical Society,201040(40):13978-13980.
[6] SHUBIN YANG;ROBERT E. BACHMAN;XINLIANG FENG.Use of Organic Precursors and Graphenes in the Controlled Synthesis of Carbon-Containing Nanomaterials for Energy Storage and Conversion[J].Accounts of Chemical Research,20131(1):116-128.
[7] Wu, Z.-S.;Zhou, G.;Yin, L.-C.;Ren, W.;Li, F.;Cheng, H.-M..Graphene/metal oxide composite electrode materials for energy storage (Review)[J].Nano Energy,20121(1):107-131.
[8] Jishan Wu;Wojciech Pisula;Klaus Mullen.Graphenes as Potential Material for Electronics[J].Chemical Reviews,20073(3):718-747.
[9] Matthew J. Allen;Vincent C. Tung;Richard B. Kaner.Honeycomb Carbon: A Review of Graphene[J].Chemical Reviews,20101(1):132-145.
[10] Park, S;Ruoff, RS.Chemical methods for the production of graphenes[J].Nature nanotechnology,20094(4):217-224.
[11] Compton, OC;Nguyen, ST.Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials[J].Small,20106(6):711-723.
[12] Daniel R. Dreyer;Sungjin Park;Christopher W. Bielawski.The chemistry of graphene oxide[J].Chemical Society Reviews,20101(1):228-240.
[13] Kris Erickson;Rolf Erni;Zonghoon Lee;Nasim Alem;Will Gannett;Alex Zettl.Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide[J].Advanced Materials,201040(40):4467-4472.
[14] Jinming Cai;Pascal Ruffieux;Rached Jaafar;Marco Bieri;Thomas Braun;Stephan Blankenburg;Matthias Muoth;Ari P. Seitsonen;Moussa Saleh;Xinliang Feng;Klaus Muellen;Roman Fasel.Atomically precise bottom-up fabrication of graphene nanoribbons[J].Nature,2010Jul.22 TN.7305(Jul.22 TN.7305):470-473.
[15] Berger, C;Song, ZM;Li, XB;Wu, XS;Brown, N;Naud, C;Mayo, D;Li, TB;Hass, J;Marchenkov, AN.Electronic confinement and coherence in patterned epitaxial graphene[J].Science,20065777(5777):1191-1196.
[16] Keun Soo Kim;Yue Zhao;Houk Jang;Sang Yoon Lee;Jong Min Kim;Kwang S. Kim;Jong-Hyun Ann;Philip Kim;Jae-Young Choi;Byung Hee Hong.Large-scale Pattern Growth Of Graphene Films For Stretchable Transparent Electrodes[J].Nature,20097230(7230):706-710.
[17] Reina A;Jia XT;Ho J;Nezich D;Son HB;Bulovic V;Dresselhaus MS;Kong J.Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J].Nano letters,20091(1):30-35.
[18] Wang JJ;Zhu MY;Outlaw RA;Zhao X;Manos DM;Holloway BC.Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J].Carbon: An International Journal Sponsored by the American Carbon Society,200414(14):2867-2872.
[19] Su, C.-Y.;Lu, A.-Y.;Xu, Y.;Chen, F.-R.;Khlobystov, A.N.;Li, L.-J..High-quality thin graphene films from fast electrochemical exfoliation[J].ACS nano,20113(3):2332-2339.
[20] Wang, J.;Manga, K.K.;Bao, Q.;Loh, K.P..High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J].Journal of the American Chemical Society,201123(23):8888-8891.
[21] Wei, Wei;Wang, Gang;Yang, Sheng;Feng, Xinliang;Muellen, Klaus.Efficient Coupling of Nanoparticles to Electrochemically Exfoliated Graphene[J].Journal of the American Chemical Society,201516(16):5576-5581.
[22] Na Li;Huawei Song;Hao Cui;Chengxin Wang.Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage[J].Nano Energy,2014:102-112.
[23] Liang, Y.;Wang, H.;Zhou, J.;Li, Y.;Wang, J.;Regier, T.;Dai, H..Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J].Journal of the American Chemical Society,20127(7):3517-3523.
[24] Hailiang Wang;Yuan Yang;Yongye Liang;Guangyuan Zheng;Yanguang Li;Yi Cui;Hongjie Dai.Rechargeable Li-O2 batteries with a covalently coupled MnCo_20_4-graphene hybrid as an oxygen cathode catalyst[J].Energy & environmental science: EES,20127(7):7931-7935.
[25] Jiefu Yin;Huaqiang Cao;Zhongfu Zhou.SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,201245(45):23963-23970.
[26] Hailiang Wang;Yongye Liang;Yanguang Li.Co_(1-x)S-Graphene Hybrid: A High-Performance Metal Chalcogenide Electrocatalyst for Oxygen Reduction[J].Angewandte Chemie,201146(46):10969-10972.
[27] Hailiang Wang;Yuan Yang;Yongye Liang.LiMn_(1-x)Fe_xPO4 Nanorods Grown on Graphene Sheets for Ultrahigh Rate-Performance Lithium Ion Batteries[J].Angewandte Chemie,201132(32):7364-7368.
[28] Lifang He;Ruguang Ma;Ning Du.Growth of TiO2 nanorod arrays on reduced graphene oxide with enhanced lithium-ion storage[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,201236(36):19061-19066.
[29] Hongfang Song;Xinlu Li;Yonglai Zhang.A nanocomposite of needle-like MnO_2 nanowires arrays sandwiched between graphene nanosheets for supercapacitors[J].CERAMICS INTERNATIONAL,20141 Pt.A(1 Pt.A):1251-1255.
[30] Huang, K.;Ling, Q. N.;Huang, C. H.;Bi, K.;Wang, W. J.;Yang, T. Z.;Lu, Y. K.;Liu, J.;Zhang, R.;Fan, D. Y.;Wang, Y. G.;Lei, Ming.Intercalation assembly of Li3VO4 nanoribbons/graphene sandwich-structured composites with enhanced oxygen reduction catalytic performance[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015:837-842.
[31] Lu, Pei-Jie;Liang, Shuquan;Liu, Jun;Wang, Wenjun;Lei, Ming;Tang, Shasha;Yang, Qian.Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties[J].Nano Energy,2015:709-724.
[32] Wang, H.;Casalongue, H.S.;Liang, Y.;Dai, H..Ni(OH)_2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J].Journal of the American Chemical Society,201021(21):7472-7477.
[33] Shubin Yang;Xinliang Feng;Long Wang.Graphene-Based Nanosheets with a Sandwich Structure[J].Angewandte Chemie,201028(28):4795-4799.
[34] Shubin Yang;Xinliang Feng;Xinchen Wang.Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions[J].Angewandte Chemie,201123(23):5339-5343.
[35] Shubin Yang;Xinliang Feng;Klaus Mullen.Sandwich-Like, Graphene-Based Titania Nanosheets with High Surface Area for Fast Lithium Storage[J].Advanced Materials,201131(31):3575-3579.
[36] Shubin Yang;Liang Zhan;Xiaoyue Xu;Yanli Wang;Licheng Ling;Xinliang Feng.Graphene-Based Porous Silica Sheets Impregnated with Polyethyleneimine for Superior CO_2 Capture[J].Advanced Materials,201315(15):2130-2134.
[37] Movahed, Siyavash Kazemi;Shariatipour, Monire;Dabiri, Minoo.Gold nanoparticles decorated on a graphene-periodic mesoporous silica sandwich nanocomposite as a highly efficient and recyclable heterogeneous catalyst for catalytic applications[J].RSC Advances,201542(42):33423-33431.
[38] Bai, Lu;Fang, Fang;Zhao, Yanyan;Liu, Yanguo;Li, Jinpeng;Huang, Guoyong;Sun, Hongyu.A sandwich structure of mesoporous anatase TiO2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes[J].RSC Advances,201481(81):43039-43046.
[39] Shen, Y.;Chen, J.S.;Zhu, J.;Yan, Q.;Hu, X..Growth of two-dimensional ultrathin anatase TiO_2 nanoplatelets on graphene for high-performance lithium-ion battery[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,201310(10):1913-1-1913-8.
[40] Chaoji Chen;Xianluo Hu;Yan Jiang;Ze Yang;Pei Hu;Yunhui Huang.TiO_2–B Nanosheets/Anatase Nanocrystals Co-Anchored on Nanoporous Graphene: In Situ Reduction–Hydrolysis Synthesis and Their Superior Rate Performance as an Anode Material[J].Chemistry: A European journal,20145(5):1383-1388.
[41] He, Lifang;Du, Ning;Wang, Chundong;Chen, Xianfeng;Zhang, Wenjun.A facile synthesis of graphene-supported mesoporous TiO2 hybrid sheets with uniform coverage and controllable pore diameters[J].Microporous and mesoporous materials: The offical journal of the International Zeolite Association,2015:95-101.
[42] Cho, Kyeong Min;Kim, Kyoung Hwan;Choi, Hyung Ouk;Jung, Hee-Tae.A highly photoactive, visible-light-driven graphene/2D mesoporous TiO2 photocatalyst[J].Green chemistry,20157(7):3972-3978.
[43] Jiang, Shang;Wang, Runwei;Pang, Mingjun;Wang, Hongbin;Zeng, Shangjing;Yue, Xinzheng;Ni, Ling;Qiu, Shilun;Zhang, Zongtao.Hierarchical composites of ultrathin carbon self-coated TiO2 nanosheets on reduced graphene oxide with enhanced lithium storage capability[J].Chemical engineering journal,2015:614-622.
[44] Jin, S.;Li, N.;Cui, H.;Wang, C..Growth of the vertically aligned graphene@ amorphous GeO_x sandwich nanoflakes and excellent Li storage properties[J].Nano Energy,20136(6):1128-1136.
[45] Xiaodong Zhuang;Fan Zhang;Dongqing Wu;Xinliang Feng.Graphene Coupled Schiff-base Porous Polymers: Towards Nitrogen-enriched Porous Carbon Nanosheets with Ultrahigh Electrochemical Capacity[J].Advanced Materials,201419(19):3081-3086.
[46] Qian Wang;Jun Yan;Zhuangjun Fan.Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors[J].Electrochimica Acta,2014:548-555.
[47] Wei, Jing;Hu, Yaoxin;Liang, Yan;Kong, Biao;Zhang, Jin;Song, Jingchao;Bao, Qiaoliang;Simon, George P.;Jiang, San Ping;Wang, Huanting.Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for Efficient Oxygen Reduction[J].Advanced functional materials,201536(36):5768-5777.
[48] Yan, Yang;Yin, Ya-Xia;Guo, Yu-Guo;Wan, Li-Jun.A Sandwich-Like Hierarchically Porous Carbon/Graphene Composite as a High-Performance Anode Material for Sodium-Ion Batteries[J].Advanced energy materials,20148(8):1.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%