在低于200℃下,以甲醛、甲酸为还原剂用两种不同的方法还原氧化石墨烯(GO):一种是将GO与液态的还原剂反应(液相反应);另一种是将GO与还原剂蒸气反应(气相反应).分别研究了还原剂用量、还原温度和还原时间对还原的氧化石墨烯(rGO)电导率的影响,并通过X-射线衍射,X射线光电子能谱和拉曼光谱对代表性的rGO表征.结果表明:气相反应温度为150℃,而液相反应温度为175℃时rGO的电导率最大.与相对较短的反应时间相比,反应时间延长到24 h时,气相反应得到的rGO的C 1s峰相关的C—C和C—O的峰面积比(Rcc/co)明显下降,而液相反应得到的rGO的Rcc/co略增加.
Graphene oxide ( GO) was reduced by formaldehyde or formic acid in vapor or liquid phases below 200℃. The influ-ence of the concentrations of reducing agents, reaction temperature and time on the electrical conductivity of the reduced graphene oxide ( rGO) was investigated. The rGOs were characterized by XRD, XPS and Raman spectroscopy. Results show that the opti-mum reaction temperatures are 150 and 175℃ in the vapor phase and the liquid phase, respectively, based on the electrical conduc-tivities of the rGOs. The ratio of the areas of the C 1s peaks related to the C—C and C—O (Rcc/co) from XPS decreases with reac-tion time from 9 to 24 h in the vapor phase, and increases from 2 to 24 h in the liquid phase, which are in agreement with the elec-trical conductivities and Raman results. Gasification of carbon atoms in GO sheets may be responsible for the decrease of Rcc/co with prolonged reaction time in the vapor phase.
参考文献
[1] | Virendra Singh;Daeha Joung;Lei Zhai;Soumen Das;Saiful I. Khondaker;Sudipta Seal.Graphene based materials: Past, present and future[J].Progress in materials science,20118(8):1178-1271. |
[2] | 马延文;刘忠儒;王博琳;朱磊;杨建平;李兴鳌.石墨烯负载Pt-Co纳米粒子及其在氧化还原反应中的应用[J].新型炭材料,2012(4):250-257. |
[3] | Sutter, PW;Flege, JI;Sutter, EA.Epitaxial graphene on ruthenium[J].Nature Materials,20085(5):406-411. |
[4] | Pierre Trinsoutrot;Hugues Vergnes;Brigitte Caussat.Three dimensional graphene synthesis on nickel foam by chemical vapor deposition from ethylene[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,20141(1):12-16. |
[5] | Muge Acik;Javier Carretero-Gonzalez;Elizabeth Castillo-Martinez.Reconstructed Ribbon Edges in Thermally Reduced Graphene Nanoribbons[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201245(45):24006-24015. |
[6] | Li D;Muller MB;Gilje S;Kaner RB;Wallace GG.Processable aqueous dispersions of graphene nanosheets[J].Nature nanotechnology,20082(2):101-105. |
[7] | Junfeng Li;Hong Lin;Zhilong Yang.A method for the catalytic reduction of graphene oxide at temperatures below 150 ℃[J].Carbon: An International Journal Sponsored by the American Carbon Society,20119(9):3024-3030. |
[8] | Songfeng Pei;Jinping Zhao;Jinhong Du.Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J].Carbon: An International Journal Sponsored by the American Carbon Society,201015(15):4466-4474. |
[9] | Wang GX;Yang J;Park J;Gou XL;Wang B;Liu H;Yao J.Facile synthesis and characterization of graphene nanosheets[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200822(22):8192-8195. |
[10] | Chen, F.;Liu, S.;Shen, J.;Wei, L.;Liu, A.;Chan-Park, M.B.;Chen, Y..Ethanol-assisted graphene oxide-based thin film formation at pentane-water interface[J].Langmuir: The ACS Journal of Surfaces and Colloids,201115(15):9174-9181. |
[11] | Dachao Luo;Guoxin Zhang;Junfeng Liu.Evaluation Criteria for Reduced Graphene Oxide[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201123(23):11327-11335. |
[12] | M. J. Fernandez-Merino;L. Guardia;J. I. Paredes.Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201014(14):6426-6432. |
[13] | 万武波;赵宗彬;胡涵;周泉;范彦如;邱介山.柠檬酸钠绿色还原制备石墨烯[J].新型炭材料,2011(1):16-20. |
[14] | Zhibin Lei;Li Lu;X. S. Zhao.The electrocapacitive properties of graphene oxide reduced by urea[J].Energy & environmental science: EES,20124(4):6391-6399. |
[15] | Gurunathan, S.;Han, J.;Kim, J.H..Humanin: A novel functional molecule for the green synthesis of graphene[J].Colloids and Surfaces, B. Biointerfaces,2013:376-383. |
[16] | 盛凯旋;徐宇曦;李春;石高全.化学还原氧化石墨烯制备高性能石墨烯自组装水凝胶[J].新型炭材料,2011(1):9-15. |
[17] | Yunzhen Chang;Gaoyi Han;Miaoyu Li.Graphene-modified carbon fiber mats used to improve the activity and stability of Pt catalyst for methanol electrochemical oxidation[J].Carbon: An International Journal Sponsored by the American Carbon Society,201115(15):5158-5165. |
[18] | Yonglang Guo;Yanzhen Zheng;Meihua Huang.Enhanced activity of PtSn/C anodic electrocatalyst prepared by formic acid reduction for direct ethanol fuel cells[J].Electrochimica Acta,20087(7):3102-3108. |
[19] | Zhen-Dbng Huang;Biao Zhang;Rui Liang.Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers[J].Carbon: An International Journal Sponsored by the American Carbon Society,201211(11):4239-4251. |
[20] | Cheng-Meng Chen;Jia-Qi Huang;Qiang Zhang.Annealing a graphene oxide film to produce a free standing high conductive graphene film[J].Carbon: An International Journal Sponsored by the American Carbon Society,20122(2):659-667. |
[21] | 李永锋;刘燕珍;杨永岗;王茂章;温月芳.多壁碳纳米管-还原氧化石墨烯杂化薄膜导电性能的调控[J].新型炭材料,2012(2):117-122. |
[22] | Cheng-Meng Chen;Qiang Zhang;Mang-Guo Yang.Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J].Carbon: An International Journal Sponsored by the American Carbon Society,201210(10):3572-3584. |
[23] | Han, T.H.;Huang, Y.-K.;Tan, A.T.L.;Dravid, V.P.;Huang, J..Steam etched porous graphene oxide network for chemical sensing[J].Journal of the American Chemical Society,201139(39):15264-15267. |
[24] | Kudin KN;Ozbas B;Schniepp HC;Prud'homme RK;Aksay IA;Car R.Raman spectra of graphite oxide and functionalized graphene sheets[J].Nano letters,20081(1):36-41. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%