欢迎登录材料期刊网

材料期刊网

高级检索

催化生物乙醇制氢有望成为用清洁可再生能源替代化石能源的有效途径,近年来受到广泛关注.本文介绍了制氢的研究概况及燃料电池的相关应用,概括了生物乙醇制氢的优势及反应过程.重点综述了以Ce和La为代表的稀土金属在乙醇制氢反应中的催化效果,并对与制氢反应紧密相关的甲烷水蒸气变换反应、水汽变换反应、CO选择性氧化反应和黑碳氧化反应中稀土金属的催化作用进行了探讨.在综述相关研究进展的基础上为生物乙醇制氢催化剂的开发提供建议.

参考文献

[1] Katsuya Shimura;Hisao Yoshida .Heterogeneous photocatalytic hydrogen production from water and biomass derivatives[J].Energy & environmental science: EES,2011(7):2467-2481.
[2] R. M. Navarro;M. C. Sanchez-Sanchez;M. C. Alvarez-Galvan;F. del Valle;J. L. G. Fierro .Hydrogen production from renewable sources: biomass and photocatalytic opportunities[J].Energy & environmental science: EES,2009(1):35-54.
[3] 黄小卫,李红卫,薛向欣,张国成.我国稀土湿法冶金发展状况及研究进展[J].中国稀土学报,2006(02):129-133.
[4] 郭耘,卢冠忠.稀土催化材料的应用及研究进展[J].中国稀土学报,2007(01):1-15.
[5] Xue Han;Yunbo Yu;Hong-He;Wenpo Shan .Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce-La solid solution[J].International journal of hydrogen energy,2013(25):10293-10304.
[6] HanX;YuYB;HeH;ZhaoJJ,WangYF .Oxidative steam reforming of ethanol over Rh catalyst supported on Ce1-xLax Oy(x =0.3) solid solution prepared by urea co-precipitation method[J].Journal of Power Sources,2013,238(0):57.
[7] Magdalena Momirlan;T.N. Veziroglu .The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J].International journal of hydrogen energy,2005(7):795-802.
[8] Kim, D.-H.;Kim, M.-S. .Hydrogenases for biological hydrogen production[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2011(18):8423-8431.
[9] LIU Qihai,LIU Zili,ZHOU Xinhua,LI Cuijin,DING Jiao.Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO2 catalysts[J].稀土学报(英文版),2011(09):872-877.
[10] Foad Mehri,Majid Taghizadeh.Performance assessment of a spiral methanol to hydrogen fuel processor for fuel cell applications[J].天然气化学(英文版),2012(05):526-533.
[11] Sanjay K.S. Patel;Prasun Kumar;Vipin C. Kalia .Enhancing biological hydrogen production through complementary microbial metabolisms[J].International journal of hydrogen energy,2012(14):10590-10603.
[12] R.M.Navarro;M.A.Pena;J.L G.Fierro .Hydrogen Production Reactions from Carbon Feedstocks:Fossil Fuels and Biomass[J].Chemical Reviews,2007(10):3952-3991.
[13] Connelly K A;Idriss H .The photoreaction of TiO2 and Au/TiO2 single crystal and powder surfaces with organic adsorbates.Emphasis on hydrogen production from renewables[J].Green Chemistry,2012,14(2):260.
[14] Simon Koumi Ngoh;Donatien Njomo .An overview of hydrogen gas production from solar energy[J].Renewable & sustainable energy reviews,2012(9):6782-6792.
[15] Armaroli N;Balzani V .The hydrogen issue[J].Chem Sus Chem,2011,4(1):21.
[16] Andreia Cristina Furtado;Christian Goncalves Alonso;Mauricio Pereira Cantao;Nadia Regina Camargo Fernandes-Machado .Support influence on Ni-Cu catalysts behavior under ethanol oxidative reforming reaction[J].International journal of hydrogen energy,2011(16):9653-9662.
[17] Tigabwa Y. Ahmed;Murni M. Ahmad;Suzana Yusup;Abrar Inayat;Zakir Khan .Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review[J].Renewable & sustainable energy reviews,2012(4):2304-2315.
[18] Jiefang Zhu;Michael Zach .Nanostructured materials for photocatalytic hydrogen production[J].Current opinion in colloid & interface science,2009(4):260-269.
[19] Anastasios Melis .Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production[J].Energy & environmental science: EES,2012(2):5531-5539.
[20] M. Murdoch;G. I. N. Waterhouse;M. A. Nadeem .The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles[J].Nature Chemistry,2011(6):489-492.
[21] McKinlay, James B.;Harwood, Caroline S. .Photobiological production of hydrogen gas as a biofuel[J].Current opinion in biotechnology,2010(3):244-251.
[22] Hallenbeck P C;Ghosh D .Improvements in fermentative biological hydrogen production through metabolic engineering[J].Journal of Environmental Management,2012,95:S360.
[23] Hallenbeck, P.C.;Abo-Hashesh, M.;Ghosh, D. .Strategies for improving biological hydrogen production[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2012(1):1-9.
[24] Hyung-Sool Lee;Wim F.J. Vermaas;Bruce E. Rittmann .Biological hydrogen production: prospects and challenges[J].Trends in biotechnology,2010(5):262-271.
[25] Akshat Tanksale .A review of catalytic hydrogen production processes from biomass[J].Renewable & sustainable energy reviews,2010(1):166-182.
[26] V.Fierro;O.Akdim;C.Mirodatos .On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts[J].Green chemistry,2003(1):20-24.
[27] Stambouli A B;Traversa E .Solid oxide fuel cells (SOFCs):a review of an environmentally clean and efficient source of energy[J].Renewable & Sustainable Energy Reviews,2002,6(5):433.
[28] F.Frusteri;S.Freni;L.Spadaro;V.Chiodo;G.Bonura;S.Donato;S.Cavallaro .H_2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd,Rh,Ni and Co catalysts[J].Catalysis Communications,2004(10):611-615.
[29] The effect of Al addition on the prevention of Ni sintering in bio-ethanol steam reforming for molten carbonate fuel cells[J].International journal of hydrogen energy,2010(7):2591.
[30] Wei Wang;Chao Su;Tao Zheng;Mingming Liao;Zongping Shao .Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system[J].International journal of hydrogen energy,2012(10):8603-8612.
[31] Lucas Nieto Degliuomini;Sebastian Biset;Patricio Luppi;Marta S. Basualdo .A rigorous computational model for hydrogen production from bio-ethanol to feed a fuel cell stack[J].International journal of hydrogen energy,2012(4):3108-3129.
[32] Litster S;McLean G .PEM fuel cell electrodes[J].Journal of Power Sources,2004,130(1-2):61.
[33] Thermodynamic analysis of ethanol processors - PEM fuel cell systems[J].International journal of hydrogen energy,2010(8):3480.
[34] de Lima S M;Colman R C;Jacobs G;Davis B H,Souza K R,de Lima A F F,Appel L G,Mattos L V,Noronha F B .Hydrogen production from ethanol for PEM fuel cells.An integrated fuel processor comprising ethanol steam reforming and preferential oxidation of CO[J[J].J Catal Today,2009,146(1-2):110.
[35] Fierro V;Akdim O;Provendier H;Mirodatos C .Ethanol oxidative steam reforming over Ni-based catalysts[J].Journal of Power Sources,2005,145(2):659.
[36] Mattos, L.V.;Jacobs, G.;Davis, B.H.;Noronha, F.B. .Production of hydrogen from ethanol: Review of reaction mechanism and catalyst deactivation[J].Chemical Reviews,2012(7):4094-4123.
[37] Hohn K L;Lin Y-C .Catalytic partial oxidation of methanol and ethanol for hydrogen generation[J].Chem Sus Chem,2009,2(10):927.
[38] Zhu, N.;Dong, X.;Liu, Z.;Zhang, G.;Jin, W.;Xu, N. .Toward highly-effective and sustainable hydrogen production: Bio-ethanol oxidative steam reforming coupled with water splitting in a thin tubular membrane reactor[J].Chemical communications,2012(57):7137-7139.
[39] F. Diaz Alvarado;F. Gracia .Steam reforming of ethanol for hydrogen production: Thermodynamic analysis including different carbon deposits representation[J].Chemical engineering journal,2010(2):649-657.
[40] ChenHQ;YuH;PengF;WangHJ YangJ PanM Q .Efiicient and stable oxidative steam reforming of ethanol for hydrogen production:Effect of in situ dispersion of Ir over Ir/La2O3[J].Journal of Catalysis,2010,269(2):281.
[41] Song H;Ozkan US .Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility[J].Journal of Catalysis,2009(1):66-74.
[42] Chen, L.;Choong, C.K.S.;Zhong, Z.;Huang, L.;Ang, T.P.;Hong, L.;Lin, J. .Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst[J].Journal of Catalysis,2010(2):197-200.
[43] Brum Pereira E;Ramirez de la Piscina P;Marti S;Homs N .H2 production by oxidative steam reforming of ethanol over K promoted Co-Rh/CeO2-ZrO2 catalysts[J].In Energ Environ Sci,2010,3:487.
[44] Pereira EB;Homs N;Marti S;Fierro JLG;de la Piscina PR .Oxidative steam-reforming of ethanol over Co/SiO2, Co-Ru/SiO2 and Co-Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes[J].Journal of Catalysis,2008(1):206-214.
[45] Meng Ni;Dennis Y.C. Leung;Michael K.H. Leung .A review on reforming bio-ethanol for hydrogen production[J].International journal of hydrogen energy,2007(15):3238-3247.
[46] Kugai J;Subramani V;Song CS;Engelhard MH;Chin YH .Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol[J].Journal of Catalysis,2006(2):430-440.
[47] Idriss H .Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts[J].Platinum Metals Review,2004,48(3):105.
[48] Deluga GA;Salge JR;Schmidt LD;Verykios XE .Renewable hydrogen from ethanol by autothermal reforming[J].Science,2004(5660):993-997.
[49] Bion N;Duprez D;Epron F .Design of nanocatalysts for green hydrogen production from bioethanol[J].Chem Sus Chem,2012,5(1):76.
[50] Fajardo, HV;Probst, LFD;Carreno, NLV;Garcia, ITS;Valentini, A .Hydrogen production from ethanol steam reforming over Ni/CeO2 nanocomposite catalysts[J].Catalysis Letters,2007(3/4):228-236.
[51] Rodriguez J A;Ma S;Liu P;Hrbek J Evans J Pérez M .Activity of CeOx and TiOx nanoparticles grown on Au (111) in the water-gas shift reaction[J].SCIENCE,2007,318(5857):1757.
[52] Fagen Wang;Weijie Cai;Helene Provendier;Yves Schuurman;Claude Descorme;Claude Mirodatos;Wenjie Shen .Hydrogen production from ethanol steam reforming over Ir/CeO_2 catalysts: Enhanced stability by PrO_x promotion[J].International journal of hydrogen energy,2011(21):13566-13574.
[53] Kugai, J;Velu, S;Song, CS .Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production[J].Catalysis Letters,2005(3/4):255-264.
[54] J.L.Ayastuy;M.P.Gonzalez-Marcos;A.Gil-Rodriguez .Selective CO oxidation over Ce_XZr_(1-X)O_2-supported Pt catalysts[J].Catalysis Today,2006(3):391-399.
[55] Diagne C;Idriss H;Kiennemann A .Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts[J].CATALYSIS COMMUNICATIONS,2002,3(12):565.
[56] de Lima SM;da Cruz IO;Jacobs G;Davis BH;Mattos LV;Noronha FB .Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst[J].Journal of Catalysis,2008(2):356-368.
[57] Maia T A;Assaf J M;Assaf E M .Steam reforming of ethanol for hydrogen production on Co/CeO2-ZrO2 catalysts prepared by polymerization method[J].Materials Chemistry and Physics,2012,132(2-3):1029.
[58] Ebiad M A;E1-Hafiz D R A;Elsalamony R A;Mohamed L S .Ni supported high surface area CeO2-ZrO2 catalysts for hydrogen production from ethanol steam reforming[J].Rsc Advances,2012,2(21):8145.
[59] Marda Araque;Julio Cesar Vargas;Yvan Zimmermann;Anne-Cecile Roger .Study of a CeZrCoRh mixed oxide for hydrogen production by ethanol steam reforming[J].International journal of hydrogen energy,2011(2):1491-1502.
[60] Lin, S.S.-Y.;Kim, D.H.;Engelhard, M.H.;Ha, S.Y. .Water-induced formation of cobalt oxides over supported cobalt/ceria-zirconia catalysts under ethanol-steam conditions[J].Journal of Catalysis,2010(2):229-235.
[61] Yazhong Chen;Zongping Shao;Nanping Xu .Ethanol Steam Reforming over Pt Catalysts Supported on Ce_xZr_(1-x)O_2 Prepared via a Glycine Nitrate Process[J].Energy & Fuels,2008(3):1873-1879.
[62] Roh, HS;Wang, Y;King, DL;Platon, A;Chin, YH .Low temperature and H-2 selective catalysts for ethanol steam reforming[J].Catalysis Letters,2006(1/2):15-19.
[63] Benjaram, M. Reddy;Lakshmi Katta;Gode ThrimurtHulu .Novel Nanocrystalline Ce_(1-x)La_xO_(2-δ) (x = 0.2) Solid Solutions: Structural Characteristics and Catalytic Performance[J].Chemistry of Materials: A Publication of the American Chemistry Society,2010(2):467-475.
[64] Athanasios N.Fatsikostas;Dimitris I.Kondarides;Xenophon E.Verykios .Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications[J].Chemical communications,2001(9):851-852.
[65] Fatsikostas A N;Kondarides D I;Verykios X E .Production of hydrogen for fuel cells by reformation of biomass-derived ethanol[J].Catalysis Today,2002,75(1-4):145.
[66] de LimaSM;daSilvaA M;daCostaLO O;AssafJ M Jacobs G Davis B H Mattos L V Noronha F B .Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol[J].APPLIED CATALYSIS A-GENERAL,2010,377(1-2):181.
[67] 戴洪兴,何洪,李佩珩,訾学红.稀土钙钛矿型氧化物催化剂的研究进展[J].中国稀土学报,2003(z2):1-15.
[68] Hongqing Chen;Hao Yu;Feng Peng .Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3[J].Chemical engineering journal,2010(1):333-339.
[69] Gallego J;Sierra G;Mondragon F;Barranlt J BatiotDupeyrat C .Synthesis of MWCNTs and hydrogen from ethanol catalytic decomposition over a Ni/La2 O3 catalyst produced by the reduction of LaNiO3[J].APPLIED CATALYSIS A-GENERAL,2011,397(1-2):73.
[70] Chen YZ;Liaw BJ;Huang CW .Selective oxidation of CO in excess hydrogen over CuO/CexSn1-xO2 catalysts[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2006(2):168-176.
[71] Roh H S;Potdar H S;Jun K W;Han S Y Kim J W .Low temperature selective CO oxidation in excess of H2 over Pt/Ce-ZrO2 catalysts[J].Catalysis Letters,2004,93(3-4):203.
[72] Halabi M H;de Croon M H J M;van der Schaaf J;Cobden P D Schouten J C .Intrinsic kinetics of low temperature catalytic methane-steam reforming and water-gas shift over Rh/CeαZr1-αO2 catalyst[J].Appl Catal Agen,2010,389(1-2):80.
[73] Halabi M H;de Croon M H J M;van der Schaaf J;Cobden P D Schouten J C .Low temperature catalytic methane steam reforming over ceria-zirconia supported rhodium[J].APPLIED CATALYSIS A-GENERAL,2010,389(1-2):68.
[74] Katsuki Kusakabe;Ken-Ichiro Sotowa;Tomokazu Eda;Yuji Iwamoto .Methane steam reforming over Ce-ZrO_2-supported noble metal catalysts at low temperature[J].Fuel Processing Technology,2004(3):319-326.
[75] Duarte, R.B.;Nachtegaal, M.;Bueno, J.M.C.;Van Bokhoven, J.A..Understanding the effect of Sm_2O_3 and CeO_2 promoters on the structure and activity of Rh/Al_2O_3 catalysts in methane steam reforming[J].Journal of Catalysis,2012:86-98.
[76] Dalin Li;Tetsuya Shishido;Yasunori Oumi .Self-activation and self-regenerative activity of trace Rh-doped Ni/Mg(Al)O catalysts in steam reforming of methane[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2007(1):98-109.
[77] Mukainakano Y;Li BT;Kado S;Miyazawa T;Okumura K;Miyao T;Naito S;Kunimori K;Tomishige K .Surface modification of Ni catalysts with trace Pd and Rh for oxidative steam reforming of methane[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2007(0):252-264.
[78] E.Ramirez-Cabrera;A.Atkinson;D.Chadwick .Reactivity of ceria, Gd-and Nb-doped ceria to methane[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2002(3):193-206.
[79] Ramirez-Cabrera E.;Atkinson A.;Chadwick D. .Catalytic steam reforming of methane over Ce0.9Gd0.1O2-x[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2004(2):127-131.
[80] Ramirez-Cabrera E;Laosiripojana N;Atkinson A;Chadwick D .Methane conversion over Nb-doped ceria[J].Catalysis Today,2003,78(1-4):433.
[81] Nakagawa N;Sagara H;Kato K .Catalytic activity of Ni-YSZ-CeO2 anode for the steam reforming of methane in a direct internal-reforming solid oxide fuel cell[J].Journal of Power Sources,2001,92(1-2):88.
[82] Rob H S;Jun K W;Dong W S;Park S E Baek Y S .Highly stable Ni catalyst supported on Ce-ZrO2 for oxysteam reforming of methane[J].Catalysis Letters,2001,74(1-2):31.
[83] Laosiripojana N;Assabumnmgrat S .Methane steam reforming over Ni/Ce-ZrO2 catalyst:Influences of CeZrO2 support on reactivity,resistance toward carbon formation,and intrinsic reaction kinetics[J].APPLIED CATALYSIS A-GENERAL,2005,290(1-2):200.
[84] Sutthisripok W;Laosiripojana N;Sikong L.Effect of specific surface area and Zr doping content on oxygen storage capacity (OSC) and methane steam reforming reactivity of CeO2-ZrO2[A].Nara,Japan,2007:1769.
[85] Prieto, P.J.S.;Ferreira, A.P.;Haddad, P.S.;Zanchet, D.;Bueno, J.M.C. .Designing Pt nanoparticles supported on CeO_2-Al _2O_3: Synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane[J].Journal of Catalysis,2010(2):351-359.
[86] Liang B;Suzuki T;Hamamoto K;Yamaguchi T,Sumi H,Fujishiro Y,Ingram B J,Carter J D .Performance of Ni-Fe/gadolinium-doped CeO2 anode supported tubular solid oxide fuel cells using steam reforming of methane[J].Journal of Power Sources,2012,202:225.
[87] de Abreu A J;Lucredio A F;Assaf E M .Ni catalyst on mixed support of CeO2-ZrO2 and Al2O3:Effect of composition of CeO2-ZrO2 solid solution on the methane steam reforming reaction[J].FUEL PROCESSING TECHNOLOGY,2012,102:140.
[88] Roh H-S;Eum I-H;Jeong D-W .Low temperature steam reforming of methane over Ni-Ce1-xZrxO2 catalysts under severe conditions[J].Renew Energy,2012,42:212.
[89] Choi S O;Moon S H .Performance of La1-xCexFe0.7Ni0 3 O3 perovskite catalysts for methane steam reforming[J].Catalysis Today,2009,146(1-2):148.
[90] A. Laobuthee;C. Veranitisagul;N. Koonsaeng .Catalytic activity of ultrafine Ce_xGd_ySm_zO2 synthesized by metal organic complex method toward steam reforming of methane[J].Catalysis Communications,2010(1):25-29.
[91] Laosiripojana N;Chadwick D;Assabulnrungrat S .Effect of high surface area CeO2 and Ce-ZrO2 supports over Ni catalyst on CH4 reforming with H2O in the presence of O2,H2,and CO2[J].CHEMICAL ENGINEERING JOURNAL,2008,138(1-3):264.
[92] Fu Q;Weber A;Flytzani-Stephanopoulos M .Nanostructured Au-CeO2 catalysts for low-temperature watergas shift[J].Catalysis Letters,2001,77(1-3):87.
[93] Fu Q;Kudriavtseva S;Saltsburg H;Flytzani-Stephanopoulos M .Gold-ceria catalysts for low-temperature water-gas shift reaction[J].CHEMICAL ENGINEERING JOURNAL,2003,93(1):41.
[94] Fu Q;Deng WL;Saltsburg H;Flytzani-Stephanopoulos M .Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2005(1/2):57-68.
[95] Senanayake, S.D.;Stacchiola, D.;Evans, J.;Estrella, M.;Barrio, L.;Pérez, M.;Hrbek, J.;Rodriguez, J.A. .Probing the reaction intermediates for the water-gas shift over inverse CeO_x/Au(1 1 1) catalysts[J].Journal of Catalysis,2010(2):392-400.
[96] Joon B. Park;Jesus Graciani;Jaime Evans;Dario Stacchiola;Sanjaya D. Senanayake;Laura Barrio;Ping Liu;Javier Fdez. Sanz;Jan Hrbek;Jose A. Rodriguez .Gold, Copper, and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level[J].Journal of the American Chemical Society,2010(1):356-363.
[97] Jose A. Rodriguez;Jesus Graciani;Jaime Evans .Water-Gas Shift Reaction on a Highly Active Inverse CeO_xCu(111) Catalyst: Unique Role of Ceria Nanoparticles[J].Angewandte Chemie,2009(43):8047-8050.
[98] Laura Barrio;Michael Estrella;Gong Zhou .Unraveling the Active Site in Copper-Ceria Systems for the Water-Gas Shift Reaction: In Situ Characterization of an Inverse Powder CeO_(2-x)/CuO-Cu Catalyst[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2010(8):3580-3587.
[99] Wei-Qiang Han;Wen Wen;Jonathan C. Hanson .One-Dimensional Ceria as Catalyst for the Low-Temperature Water-Gas Shift Reaction[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2009(52):21949-21955.
[100] EC.Meunier;D.Reid;A.Goguet .Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water-gas shift catalyst: First unambiguous evidence of the minority role of formates as reaction intermediates[J].Journal of Catalysis,2007(2):277-287.
[101] Fu Q.;Saltsburg H.;Flytzani-Stephanopoulos M. .Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J].Science,2003(5635):935-938.
[102] Gregor Sedmak;Stanko Hocevar;Janez Levec .Kinetics of selective CO oxidation in excess of H_2 over the nanostructured Cu_(0.1)Ce_(0.9)O_(2-y) catalyst[J].Journal of Catalysis,2003(2):135-150.
[103] Ince T;Uysal G;Akin A N;Yildirim R .Selective low-temperature CO oxidation over Pt-Co-Ce/Al2O3 in hydrogen-rich streams[J].APPLIED CATALYSIS A-GENERAL,2005,292:171.
[104] Polster, C.S.;Nair, H.;Baertsch, C.D. .Study of active sites and mechanism responsible for highly selective CO oxidation in H_2 rich atmospheres on a mixed Cu and Ce oxide catalyst[J].Journal of Catalysis,2009(2):308-319.
[105] Jong Won Park;Jin Hyeok Jeong;Wang Lai Yoon;Chang Soo Kim;Deuk Ki Lee;Yong-Ki Park;Young Woo Rhee .Selective oxidation of CO in hydrogen-rich stream over Cu-Ce catalyst promoted with transition metals[J].International journal of hydrogen energy,2005(2):209-220.
[106] Guenay M E;Yildirim R .Neural network aided design of Pt-Co-Ce/Al2 O3 catalyst for selective CO oxidation in hydrogen-rich streams[J].CHEMICAL ENGINEERING JOURNAL,2008,140(1-3):324.
[107] Son I H .Study of Ce-Pt/γ-Al2O3 for the selective oxidation of CO in H2 for application to PEFCs:effect of gases[J].Journal of Power Sources,2006,159(2):1266.
[108] Chen Shengzhou;Hanbo Zou;Zili Liu;Weiming Lin .DRIFTS study of different gas adsorption for CO selective oxidation on Cu-Zr-Ce-O catalysts[J].Applied Surface Science,2009(15):6963-6967.
[109] DRIFTS study of Cu-Zr-Ce-O catalysts for selective CO oxidation[J].International journal of hydrogen energy,2009(23):9324.
[110] Yin-Zu Chen;Biing-Jye Liaw;Han-Chuan Chen .Selective oxidation of CO in excess hydrogen over CuO/Ce_xZr_(1-x)O_2 catalysts[J].International journal of hydrogen energy,2006(3):427-435.
[111] Yin-Zu Chen;Biing-Jye Liaw;Wei-Chian Chang;Ching-Tsuen Huang .Selective oxidation of CO in excess hydrogen over CuO/Ce_xZr_(1-x)O_2-Al_2O_3 catalysts[J].International journal of hydrogen energy,2007(17):4550-4558.
[112] Hanbo Zou,Shengzhou Chen,Weiming Lin.Effect of pretreatment methods on the performance of Cu-Zr-Ce-O catalyst for CO selective oxidation[J].天然气化学(英文版),2008(02):208-211.
[113] J.L. Ayastuy;A. Gurbani;M.P. Gonzalez-Marcos;M.A. Gutierrez-Ortiz .Selective CO oxidation in H_2 streams on CuO/Ce_xZr_(1_x)O_2 catalysts: Correlation between activity and low temperature reducibility[J].International journal of hydrogen energy,2012(2):1993-2006.
[114] Komateedi N. Rao;P. Venkataswamy;Benjaram M. Reddy .Structural Characterization and Catalytic Evaluation of Supported Copper-Ceria Catalysts for Soot Oxidation[J].Industrial & Engineering Chemistry Research,2011(21):11960-11969.
[115] Masato Machida;Yuichiro Murata;Kouji Kishikawa .On the Reasons for High Activity of CeO2 Catalyst for Soot Oxidation[J].Chemistry of Materials: A Publication of the American Chemistry Society,2008(13):4489-4494.
[116] I.Atribak;I.Such-Basanez;A.Bueno-Lopez .Catalytic activity of La-modified TiO2 for soot oxidation by O2[J].Catalysis Communications,2007(3):478-482.
[117] Zhang G Z;Zhao Z;Xu J F;Zheng J X Liu J Jiang G Y Duan A J He H .Comparative study on the preparation,characterization and catalytic performances of 3DOM Ce-based materials for the combustion of diesel soot[J].Applied Catalysis B:Environmental,2011,107(3-4):302.
[118] Zhu L;Yu J J;Wang X Z .Oxidation treatment of diesel soot particulate on CexZr1-x O2[J].Journal of Hazardous Materials,2007,140(1-2):205.
[119] A.Bueno-Lopez;K.Krishna;M.Makkee;J.A.Moulijn .Enhanced soot oxidation by lattice oxygen via La~(3+)-doped CeO_2[J].Journal of Catalysis,2005(1):237-248.
[120] Prasad D H;Park S Y;Oh E O;Ji H Kim H R Yoon K J Son J W Lee J H .Synthesis of nano-crystalline La1-xSrxCoO3-δ perovskite oxides by EDTA-citrate complexing process and its catalytic activity for soot oxidation[J].APPLIED CATALYSIS A-GENERAL,2012,447:100.
[121] Liang Q;Wu X D;Weng D;Xu H B .Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation[J].Catalysis Today,2008,139(1-2):113.
[122] I.Atribak;I.Such-Basanez;A.Bueno-Lopez .Comparison of the catalytic activity of MO2(M=Ti,Zr,Ce)for soot oxidation under NO_x/O_2[J].Journal of Catalysis,2007(1):75-84.
[123] LiWL;Wang H;Ren Z Y;Wang G Bai J B .Coproduction of hydrogen and multi-wall carbon nanotubes from ethanol decomposition over Fe/Al2O3 catalysts[J].Applied Catalysis B:Environmental,2008,84(3-4):433.
[124] WangG;Wang H;TangZ X;Li W L Bai J B .Simultaneous production of hydrogen and multi-walled carbon nanotubes by ethanol decomposition over Ni/ Al2O3 catalysts[J].Applied Catalysis B:Environmental,2009,88(1-2):142.
[125] Gallego J;Mondragon F;Batiot-Dupeyrat C .Simultaneous production of hydrogen and carbon nanostructured materials from ethanol over LaNiO3 and LaFeO3 perovskites as catalyst precursors[J].APPLIED CATALYSIS A-GENERAL,2013,450:73.
[126] Wu C F;Williams P T .A novel nano-Ni/SiO2 catalyst for hydrogen pProduction from steam reforming of ethanol[J].Environmental Science and Technology,2010,44(15):5993.
[127] Wu C F;Williams P T .Hydrogen production from steam reforming of ethanol with nano-Ni/SiO2 catalysts prepared at different Ni to citric acid ratios using a solgel method[J].Applied Catalysis B:Environmental,2011,102(1-2):251.
[128] Haga F;Nakajima T;Miya H;Mishima S .Catalytic properties of supported cobalt catalysts for steam reforming of ethanol[J].Catalysis Letters,1997,48(3-4):22.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%