以双层系统的ZHK模型为基础,研究了双层量子霍尔系统在朗道填充因子取υ=1/2这种状态的静态涡流解。ZHK模型是一种包含Chern-Simons规范相互作用的有效理论。为了简便,假定涡流具有柱对称的结构,随后写出了无量纲的非线性运动方程组,并分析了解的渐进行为。另外,在自对偶条件下,确定了自耦合常数的形式,并写出了关于密度的自对偶方程。最后,使用数值方法找到了类型分别为(0,1),(0,?1),(1,?1)和(?1,?1)的涡流解。发现拓扑数为(1,?1)的涡流是不稳定的,它会衰变为(1,0)和(0,?1)两种涡流。数值结果表明,拓扑数为(0,?1)和(?1,?1)的涡流确实是自对偶涡流解。
10.11804/NuclPhysRev.30.02.128
参考文献
[1] | ZHANG S C, HANSSON H, KIVELSON S. Phys Rev Lett,1989,62:82. |
[2] | ZHANG S C. Int J Mod Phys B,1992,6:25. |
[3] | READ N. Phys Rev Lett,1989,62:86. |
[4] | EZAWA Z F. Quantum Hall Effects Field Theoretical Approach and Related Topics[M].2nd. Singapore:World Scientific,2008:47-408. |
[5] | EISENSTEIN J P, BOEBINGER G S, PFEIFFER L N, et al. Phys Rev Lett,1992,68:1383. |
[6] | SUEN Y W, ENGEL L W, SANTOS M B, et al.1992,68:1379. |
[7] | EZAWA Z F, HOTTA M, IWAZAKI A. Phys Rev B,1992,46:7765. |
[8] | EZAWA Z F, IWAZAKI A. Phys Rev B,1993,47:7295. |
[9] | EZAWA Z F, IWAZAKI A. Phys Rev B,1993,48:15189. |
[10] | EZAWA Z F, HOTTA M, IWAZAKI A. Phys Rev D,1991,44:452. |
[11] | DEMLER E, NAYAK C, SARMA S D. Phys Rev Lett,2001,86:1853. |
[12] | HORVATHY P A, ZHANG P. Phyics Reports,2009,481:83. |
[13] | WEN X G, ZEE A. Phys Rev Lett,1992,69:1811. |
[14] | MORANDI G. The Role of Topology in Classical and Quantum Physics[M]. Berlin:Springer-Verlag,1992:1-222. |
[15] | POOLE C P, FARACH J H, CRESWICK R J, et al. Superconduc-tivity[M].2nd. London:Elsevier,2007:143-193. |
[16] | COMTET A, JOLICCEUR T, OUVRY S, et al. Topological As-pects of Low Dimensional Systems[M]. New York:Springer,1999:1-234. |
[17] | ZEE A. Quantum Field Theory In A Nutshell [M]. Princeton:Princeton University Press,2003:257-317. |
[18] | WEN X G, ZEE A. Phys Rev B,1992,46:2290. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%