原子核物理评论 , 2014, (3): 391-400. doi: 10.11804/NuclPhysRev.31.03.391
氚分析的β衰变诱发X射线谱技术研究进展
毛莉 1, , 陈浩 2, , 孙洪伟 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用自制的具有高效内部热量回收功能的多效膜蒸馏组件对不同浓度的氯化钠水溶液进行浓缩研究.考察进料温度、浓度、流速对膜通量、造水比和脱盐率的影响.实验结果表明,料液加热温度T3升高时膜通量和造水比随之明显增加,而脱盐率保持不变;料液流速增加使膜通量增加,而造水比随之降低,脱盐率几乎不受影响;随着料液浓度的增加,膜的通量和造水比逐渐降低,脱盐率略微减小但影响很小.当料液中氯化钠浓度较低时,该过程的最大膜通量为6.8L/(m2·h),造水比为12.5;当料液中氯化钠浓度大于15%时,膜通量为5.2 L/(m2·h),造水比为6.2,脱盐率可达99.99%.实验结果表明,多效膜蒸馏技术可有效应用于海水淡化及常规海水淡化过程,例如反渗透和多效蒸发过程所副产浓盐水的深度浓缩和淡水生产.","authors":[{"authorName":"秦英杰","id":"bb1677b4-230c-4175-99f3-a70cb658a21c","originalAuthorName":"秦英杰"},{"authorName":"刘立强","id":"29db0bee-c2ea-41f7-b920-80856f9b3938","originalAuthorName":"刘立强"},{"authorName":"何菲","id":"d498df3e-c6e2-4ada-a744-0c5705cd010d","originalAuthorName":"何菲"},{"authorName":"张艳萍","id":"c3ab8f06-f1d0-4488-9d5a-b386b8d67336","originalAuthorName":"张艳萍"},{"authorName":"吴茵","id":"d7130db5-39fa-4bea-969c-041fff44312d","originalAuthorName":"吴茵"},{"authorName":"王世昌","id":"658d9466-a445-4706-946a-23d3f6f25666","originalAuthorName":"王世昌"}],"doi":"10.3969/j.issn.1007-8924.2012.02.010","fpage":"52","id":"8034304d-b386-4155-b1b6-2823fc9dc9a1","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"738f18df-9da3-4fb3-8e25-40e44af3aa47","keyword":"多效膜蒸馏","originalKeyword":"多效膜蒸馏"},{"id":"57b7c839-2924-42ab-b0b0-71f58d5a9d3b","keyword":"膜蒸馏","originalKeyword":"膜蒸馏"},{"id":"c9f7d465-2f6a-4a1d-a550-ee37ae25e6a7","keyword":"造水比","originalKeyword":"造水比"},{"id":"4c7aa276-dbcf-4f8e-acaf-3c8cd3191f32","keyword":"海水淡化","originalKeyword":"海水淡化"},{"id":"5f00c665-70e6-4e51-9b9d-76143cfbc3db","keyword":"反渗透浓水","originalKeyword":"反渗透浓水"},{"id":"f9a2344b-3968-49f0-9830-3491fefbb253","keyword":"浓盐水","originalKeyword":"浓盐水"},{"id":"608e6fe8-093c-4beb-bb99-c3b8340275c7","keyword":"浓缩","originalKeyword":"浓缩"}],"language":"zh","publisherId":"mkxyjs201202010","title":"内部热能回收式多效膜蒸馏用于海水淡化及浓盐水深度浓缩","volume":"32","year":"2012"},{"abstractinfo":"截留性能是超滤膜的重要技术指标,但现行标准中用于测试该性能的基准物质存在分子量偏小,吸附性较强、水溶性和稳定性偏低等缺陷,不能满足日益增长的测试需要.本文详细阐述了国内外超滤膜截留性能检测用基准物质研究和应用现状,并提出了今后研究的重点和方向.","authors":[{"authorName":"潘献辉","id":"96d2970a-8745-4776-982f-167e188d12e1","originalAuthorName":"潘献辉"},{"authorName":"王晓楠","id":"2d01ff78-8959-4ada-a033-b2f49eeb8f6d","originalAuthorName":"王晓楠"},{"authorName":"张艳萍","id":"26e05d80-667a-402c-ba16-8dd8eb9fca17","originalAuthorName":"张艳萍"},{"authorName":"刘静","id":"b39e41f6-edc3-46a6-a394-75211f1fddd9","originalAuthorName":"刘静"},{"authorName":"王旭亮","id":"e94be8cf-db0b-4302-811d-1d4a0ef4e830","originalAuthorName":"王旭亮"}],"doi":"","fpage":"104","id":"8d4bdc46-b348-42c1-8164-2ee5483bff02","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"e74a6e76-160a-4fe2-a642-a0eedd7f0f40","keyword":"超滤膜","originalKeyword":"超滤膜"},{"id":"d004fc72-a37f-4da5-8798-7750532d6a95","keyword":"截留性能","originalKeyword":"截留性能"},{"id":"4dbf6fe6-7ba9-45b7-b600-1d4b1ef8a687","keyword":"基准物质","originalKeyword":"基准物质"}],"language":"zh","publisherId":"mkxyjs201302019","title":"超滤膜截留性能检测用基准物质研究与应用进展","volume":"33","year":"2013"},{"abstractinfo":"采用激光粒度分析仪对粉煤灰提取后的工业废物硅酸钙样品进行分析,结果表明硅酸钙样品的平均粒径在35.36 μm,分选性极好,样品频率曲线形态近似正态分布,峰态呈中等峰态.采用扫描电镜和X-射线能谱对硅酸钙样品表面进行分析,结果表明硅酸钙粒径大小不一、表面疏松多孔,由Ca、Si、O、C元素组成.设计正交实验研究了pH、反应温度、硅酸钙投加量以及六价铬溶液初始浓度对于反应去除率的影响,结果表明影响顺序为硅酸钙投加量>溶液浓度>反应温度> pH,反应在pH =6,反应温度30℃,硅酸钙投加量为30g/L,溶液浓度为1 mg/L的条件下取得最大去除率,六价铬去除率为16.51%.等温吸附实验结果表明Langmuir和Freundlich等温吸附模型均有较好模拟,硅酸钙对Cr6+的最大吸附容量为0.351 mg/g.","authors":[{"authorName":"秦泽敏","id":"d6060035-1490-45a3-8360-86b314e03a04","originalAuthorName":"秦泽敏"},{"authorName":"董黎明","id":"5a218a03-44e5-48fa-b4bb-4b3657b7779a","originalAuthorName":"董黎明"},{"authorName":"张艳萍","id":"bad42ed9-b9d4-4c2e-9480-4383215629cc","originalAuthorName":"张艳萍"},{"authorName":"赵钰","id":"27e6e594-a178-4391-8622-a05863f732fc","originalAuthorName":"赵钰"},{"authorName":"周恋彤","id":"d8d89d0c-4588-47e4-9861-a29ec0cd19fd","originalAuthorName":"周恋彤"}],"doi":"","fpage":"2828","id":"b3a82e99-4835-46f9-a5ac-8bea8ce62403","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"111e8d44-52f3-417c-93ce-95d2cdf75c92","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"dfb87e89-7db0-4f8d-a37e-656d2cc87184","keyword":"粒径","originalKeyword":"粒径"},{"id":"416bdf43-cca6-404c-9d5b-c7aaaf038855","keyword":"六价铬","originalKeyword":"六价铬"},{"id":"0c23d4b6-e5ab-451d-a831-bc1f38266e22","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"gsytb201411011","title":"硅酸钙粒径分析及吸附去除水中六价铬的研究","volume":"33","year":"2014"},{"abstractinfo":"采用球磨法(ball milling,BM)制备了AZ91镁合金粉末,对制得的粉末进行冷压、烧结处理.利用光学显微镜(OM)和扫描电子显微镜(SEM)观察并研究了不同烧结温度下合金的微观组织,利用显微硬度计测试了铸态以及600℃下烧结合金的硬度.结果表明:球磨后粉末由数百微米的不规则颗粒转变为中位径为9.98 μm,且形貌规整的粉末颗粒.随着烧结温度的提高,合金的致密度因内部物质迁移能力的增强而提高,当温度达到600℃时,致密度达到了96.3%.与铸态时相比,粉末冶金法制备的合金,其显微硬度从81.06 HV提高到了104.39 HV.","authors":[{"authorName":"杨伟东","id":"b12cc0c7-3a59-413a-b7c8-8f49875bc8cf","originalAuthorName":"杨伟东"},{"authorName":"樊建锋","id":"70567672-2ef2-437e-a694-d234a8b8ddf1","originalAuthorName":"樊建锋"},{"authorName":"张金玲","id":"6aa49934-a0ec-48d6-b6af-907d877dc733","originalAuthorName":"张金玲"},{"authorName":"张艳萍","id":"25876416-d115-4f04-88a6-ec0585e7f28c","originalAuthorName":"张艳萍"},{"authorName":"谢中柱","id":"99178f32-dbf4-4239-be58-f153f77ab750","originalAuthorName":"谢中柱"},{"authorName":"许并社","id":"6027c024-6e3e-4920-9cea-0225c9cbd3df","originalAuthorName":"许并社"}],"doi":"","fpage":"38","id":"c4d40d12-b790-49a9-bb06-e4b50b5f64a5","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"70dc588e-7d20-4718-966a-b005c2f7163f","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"39bcbbe4-2627-4722-bed6-7f8d6aba7f78","keyword":"AZ91镁合金","originalKeyword":"AZ91镁合金"},{"id":"7fe6fd05-70bb-4ed4-91c3-b7eebb5c1bd9","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"30957759-7319-4f46-9063-100fa44c4078","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"jsrclxb201301008","title":"烧结温度对粉末冶金AZ91镁合金组织及硬度的影响","volume":"34","year":"2013"},{"abstractinfo":"孔径是微滤膜最为重要的表征参数之一,直接影响到微滤膜的分离性能.选用聚偏氟乙烯(PVDF)和聚丙烯(PP)材质的中空纤维微滤膜,研究并优化了泡点压力法测定微滤膜最大孔径的检测条件.以乙醇作为润湿剂,在20℃、浸润时间30 min的最佳实验条件下,该方法测定PVDF和PP中空纤维微滤膜最大孔径的相对标准偏差分别为5.4%和8.8%.使用泡点压力法、压汞法和氮气吸附法测定4种不同材质的中空纤维微滤膜孔径特征,结果表明,泡点压力法测得的最大孔径和压汞法测得的平均孔径存在显著的线性相关性,氮气吸附法不适用于微滤膜孔径的测定.","authors":[{"authorName":"张艳萍","id":"2d12b194-cf7a-45cf-9ded-d3e1358882d9","originalAuthorName":"张艳萍"},{"authorName":"潘献辉","id":"6e1b4f5a-29fa-4671-be5f-7603e89eef80","originalAuthorName":"潘献辉"},{"authorName":"王旭亮","id":"7d2826c6-01ce-4199-a13a-f0c6cd0e235d","originalAuthorName":"王旭亮"},{"authorName":"关毅鹏","id":"1a4ad0e1-c95a-4670-95c5-c6a645a92316","originalAuthorName":"关毅鹏"},{"authorName":"张召才","id":"f15adb58-4c54-4f20-865b-b603a558bfe6","originalAuthorName":"张召才"}],"doi":"","fpage":"97","id":"cce9699f-3aca-4af5-b446-83c90b236413","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"e41298bd-f306-4f0c-83e8-8de2c4557658","keyword":"微滤膜","originalKeyword":"微滤膜"},{"id":"48edb05b-4a65-4e6f-98cf-73360a3e3b6a","keyword":"孔径","originalKeyword":"孔径"},{"id":"eeacdabb-8554-4680-adad-813a519de2fb","keyword":"泡点压力法","originalKeyword":"泡点压力法"},{"id":"cd9a8712-d01b-4c5a-9138-f84e01db8704","keyword":"压汞法","originalKeyword":"压汞法"},{"id":"bbacd4bd-728a-4ba3-9d9f-f7f96a31fc2c","keyword":"氮气吸附法","originalKeyword":"氮气吸附法"}],"language":"zh","publisherId":"mkxyjs201303019","title":"中空纤维微滤膜孔径检测方法研究","volume":"33","year":"2013"},{"abstractinfo":"采用液接法制备Zn/CuxTiy扩散偶,利用SEM和EDS等对扩散偶在663 K保温不同时间后的反应区进行分析.结果表明,除Zn/CuTi2和Zn/CuTi体系以外,其它5个扩散反应体系能够形成周期层片型结构,分别是Zn/Cu9Ti,Zn/Cu4Ti,Zn/Cu7Ti3,Zn/Cu3Ti2,Zn/Cu4Ti3.Zn/CuTiy体系靠近反应区前沿的周期层片结构由单相CuZn2和双相CuZn2+TiZn3交替构成,而且周期层片型结构的层片厚度与CuxTiy合金的成分有关:CuxTiy合金中Cu原子含量越高,对应反应区的周期层片厚度越小.上述实验结果符合扩散应力模型的预测.","authors":[{"authorName":"巩宇","id":"128c6f97-ca57-43dc-88ed-83ceb8b084c7","originalAuthorName":"巩宇"},{"authorName":"陈永翀","id":"49be8860-5292-4bb5-bb87-c79755b5e74e","originalAuthorName":"陈永翀"},{"authorName":"刘丹丹","id":"1b7320b9-973c-434f-a3fc-a64f1b56a58e","originalAuthorName":"刘丹丹"},{"authorName":"张艳萍","id":"47ebb8d9-b34e-483a-8098-d1d4d3cc9050","originalAuthorName":"张艳萍"},{"authorName":"CSERH(A)TICsaba","id":"c7ff7b93-40a8-4b81-bac0-f81e5eebfa7a","originalAuthorName":"CSERH(A)TICsaba"},{"authorName":"CSIKAttila","id":"8af07200-c06f-4f53-9c70-3e6fc94b6909","originalAuthorName":"CSIKAttila"}],"doi":"10.11900/0412.1961.2015.00289","fpage":"349","id":"3ba24336-66c5-4ef2-84db-b20e3e501aa5","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"cc0cbb56-0172-4be3-82ca-ceec6c1384c0","keyword":"Zn/CuxTiy","originalKeyword":"Zn/CuxTiy"},{"id":"525b8575-cd2c-4a7c-9866-179f8f23f827","keyword":"扩散偶","originalKeyword":"扩散偶"},{"id":"2f188220-d4d6-4ddd-9851-2dd5c62501b2","keyword":"固态反应","originalKeyword":"固态反应"},{"id":"9983e9c2-63f4-4bda-834c-3f47c16e393f","keyword":"周期层片结构","originalKeyword":"周期层片结构"},{"id":"486fa6b7-a620-460e-b450-d7086dbbd83a","keyword":"扩散应力","originalKeyword":"扩散应力"}],"language":"zh","publisherId":"jsxb201603012","title":"Zn/CuxTiy体系固态反应周期层片型结构研究","volume":"52","year":"2016"},{"abstractinfo":"利用含时密度泛函理论和局域密度近似方法,计算了H2O分子在速度为12.5 a0/fs的重离子C+和C2+作用下产生的各种电荷态的H2O分子离子的几率、平均逃逸电子数和偶极矩的变化随时间的演化.计算结果表明,在重离子势最大时,电偶极矩的变化最大,重离子的电荷态越高,得到高电荷态H2O分子的几率越大;重离子远离分子时,电偶极矩的变化趋于平缓.","authors":[{"authorName":"张艳萍","id":"a282cd20-7ccd-4d98-bc2a-2e4df338c83f","originalAuthorName":"张艳萍"},{"authorName":"张丰收","id":"4c9d5fbf-395e-4a85-8cd8-5d13867fa616","originalAuthorName":"张丰收"},{"authorName":"蒙克来","id":"db78856d-3d0a-4795-89e0-25ffcf6be5bb","originalAuthorName":"蒙克来"},{"authorName":"肖国青","id":"f33e50d0-a2ab-40b2-9e35-d34841786c58","originalAuthorName":"肖国青"}],"doi":"10.3969/j.issn.1007-4627.2006.03.015","fpage":"335","id":"c1fa1638-dfa4-4045-9fbe-36f1f502e74d","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"4e30634f-a56e-48d2-b814-53994a179b40","keyword":"重离子","originalKeyword":"重离子"},{"id":"9543a182-cfc6-4d8d-ae53-c473507bcf25","keyword":"离化几率","originalKeyword":"离化几率"},{"id":"c954bb65-e806-49da-a74e-0cbf272b1b2e","keyword":"H2O分子","originalKeyword":"H2O分子"},{"id":"2c550de4-6f11-4bac-81b0-3e9afe69c381","keyword":"含时局域密度近似","originalKeyword":"含时局域密度近似"}],"language":"zh","publisherId":"yzhwlpl200603015","title":"H2O分子在不同电荷态的重离子作用下的离化","volume":"23","year":"2006"},{"abstractinfo":"利用电化学测试和表面分析技术,研究了2,5-二巯基-1,3,4噻二唑(DMTD)在硫-乙醇溶液中对金属银、铜的缓蚀性能,结合量子化学计算和分子动力学模拟对DMTD在金属表面的吸附行为和缓蚀作用机理进行了分析讨论.结果表明,DMTD在50 mg/L的硫-乙醇溶液中,对金属银、铜均起到较好的缓蚀作用.极化曲线结果表明,当缓蚀剂DMTD浓度达到50 mg/L时,缓蚀效率可以达到92.3%.表面分析技术表明,缓蚀剂的加入在金属表面形成吸附膜,明显抑制了腐蚀速率.量化计算和分子动力学模拟得到了缓蚀剂分子的活性位点和缓蚀剂在金属表面的吸附形态.","authors":[{"authorName":"刘琳","id":"38154dcf-5c81-43d6-bb02-5e8fce6358e6","originalAuthorName":"刘琳"},{"authorName":"彭丹","id":"0710a3eb-c895-438f-8f82-8d48279f8131","originalAuthorName":"彭丹"},{"authorName":"张艳萍","id":"7728b55a-e5a1-4815-8812-fc25df66a360","originalAuthorName":"张艳萍"},{"authorName":"刘娇","id":"19722010-c3d8-407a-92fd-5952958571bb","originalAuthorName":"刘娇"},{"authorName":"张强","id":"a5115812-fb28-4211-af4e-235bf921c077","originalAuthorName":"张强"},{"authorName":"钱建华","id":"b73253d8-0c01-48fd-8a9e-f4d74bee6fb6","originalAuthorName":"钱建华"}],"doi":"10.11896/j.issn.1005-023X.2016.06.019","fpage":"78","id":"f32e463b-621b-49db-8068-5b4c2c7892a1","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b449a625-1617-4ffd-b16a-9e3740608e0e","keyword":"噻二唑","originalKeyword":"噻二唑"},{"id":"23a454d7-a3c4-4349-9554-e54469d21b40","keyword":"极化曲线","originalKeyword":"极化曲线"},{"id":"30790105-dc45-4b87-9942-2b6866d1e77b","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"}],"language":"zh","publisherId":"cldb201606020","title":"噻二唑型缓蚀剂缓蚀性能的研究","volume":"30","year":"2016"},{"abstractinfo":"与块状、薄膜状、柱状或袋状的柔性电池相比,线状柔性电池的可弯曲性和可缠绕性,以及高能量密度和稳定的容量保持率,极大地方便了电路的设计,同时也改变了传统电池的电路供能方式,能够最大化地填充设备的多余空间。综述了国内外线状柔性锂电池的不同设计理念、制备方法及各自的优缺点,分析了目前制约线状柔性电池产业化的主要原因,并展望了其发展前景。","authors":[{"authorName":"张艳萍","id":"3d841d2e-0f47-4b9f-8031-9724c4ca1bcd","originalAuthorName":"张艳萍"},{"authorName":"陈永翀","id":"d840c66c-36de-4f36-b451-619921bbb0dc","originalAuthorName":"陈永翀"},{"authorName":"刘丹丹","id":"876a7d20-47d5-4367-abb6-d4055cdf7f78","originalAuthorName":"刘丹丹"},{"authorName":"康利斌","id":"00fe356d-928b-4e38-90da-6af161edd443","originalAuthorName":"康利斌"},{"authorName":"张萍","id":"39d2b4a0-3794-4ba6-a45a-e5ad2138e911","originalAuthorName":"张萍"}],"doi":"10.3969/j.issn.1001-9731.2016.10.006","fpage":"10029","id":"5f042f4e-270a-433c-8d1f-000d323db9f1","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d7e45fa2-62f0-4e5d-a2c7-f42fa6e1b346","keyword":"柔性电池","originalKeyword":"柔性电池"},{"id":"42f10727-5bce-41f8-bfeb-42435378aa30","keyword":"纤维锂电池","originalKeyword":"纤维锂电池"},{"id":"ed9939ec-6b2c-408f-b892-501bfa1ca6fe","keyword":"可穿戴设备","originalKeyword":"可穿戴设备"}],"language":"zh","publisherId":"gncl201610006","title":"线状柔性锂电池的研究进展?","volume":"47","year":"2016"},{"abstractinfo":"在军用桥梁器材用复合材料优点的基础上,本文介绍了复合材料在国外军用桥梁器材中的应用实例,对复合材料在我军军用桥梁器材中的应用前景作了分析,旨在推动复合材料在我军军用桥梁器材中的应用.","authors":[{"authorName":"夏凌辉","id":"c2ce8d8e-c333-4fa2-948d-2b3ef1b8952e","originalAuthorName":"夏凌辉"},{"authorName":"常春伟","id":"bc60828c-b83c-4b79-8d81-594072bf2ea7","originalAuthorName":"常春伟"},{"authorName":"张艳萍","id":"aabcc9dd-c647-409d-9e2d-b1ba9e2ea90b","originalAuthorName":"张艳萍"}],"doi":"10.3969/j.issn.1003-0999.2006.02.014","fpage":"51","id":"14238ac0-02b5-4670-ba63-4ef1d24f506c","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"e0a1c8fd-e6d3-4a9c-aa90-f536d86d56f0","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"a31ddd62-64a2-4f12-a1e0-b7639d195b0f","keyword":"军用桥梁","originalKeyword":"军用桥梁"},{"id":"920d8433-dcaa-4d2b-bc36-a91f5ae57b45","keyword":"前景分析","originalKeyword":"前景分析"}],"language":"zh","publisherId":"blgfhcl200602014","title":"复合材料在军用桥梁器材中的应用研究","volume":"","year":"2006"}],"totalpage":24,"totalrecord":233}