欢迎登录材料期刊网

材料期刊网

高级检索

给出了反对称分子动力学模型(AMD)计算的50 MeV/nucleon 112 Sn+112 Sn反应的分析结果。该研究是反对称分子动力学模型中统计冻结概念的部分研究结果。利用自洽法结合修正的Fisher模型,提取了发射源的温度和密度分别为T=(6.1±0.2) MeV,ρ/ρ0=0.69±0.03。通过与AMD模型计算的系统在时间演化过程中的最大密度比较,得出碎片发射源的密度远小于系统的最大密度。利用自洽法提取的温度和密度与35 MeV/nucleon的40 Ca+40 Ca反应系统及40 MeV/nucleon的64 Zn+112 Sn反应系统所提取的温度和密度非常接近。该结果表明反对称分子动力学模型中,系统在中等质量碎片形成时刻处于统计冻结体积。

As a part of statistical freeze-out study in antisymmetrized molecular dynamics (AMD), an analysis of 112Sn+112Sn at 50 MeV/nucleon is presented. Using the self-consistent method combined with the Modified Fisher model, the fragmenting source density,ρ/ρ0=0.69±0.03, temperature, T=(6.1±0.2) MeV, are extracted. By comparing the maximum density in the system during the time evolution of AMD calculation, a significantly lower density is found for the fragmenting source density. The extracted fragmenting source density and temperature are very similar to those for 40Ca+ 40Ca at 35 MeV/nucleon and 64Zn+ 112Sn at 40 MeV/nucleon. These indicate that there is a common statistical freeze-out volume at the time of the formation of intermediate mass fragments (IMFs) in AMD transport model.

参考文献

[1] BOHR N.[J].Nature,1936137:35.
[2] GROSS D H E.[J].Rep Prog Phys,199053:605.
[3] BONDORF J P;DONANGELO R;MISHUSTIN I N.[J].Nucl Phys A,1985443:321.
[4] FELDMEIER H.[J].Nucl Phys A,1990515:147.
[5] ONO A;HORIUCHI H.[J].Phys Rev C,199653:2958.
[6] ONO A.[J].Phys Rev C,199959:853.
[7] ONO A;HUDAN S;CHBIHI A.[J].Phys Rev C,200266:014603.
[8] PAPA M;MARUYAMA T;BONASERA A.[J].Phys Rev C,200164:024612.
[9] WANG Ning;LI Zhuxia;WU Xizhen.[J].Phys Rev C,200265:064608.
[10] AICHELIN J.[J].Phys Rep,1991202:233.
[11] KRUSE H;JACAK B V;MOLITORIES J J.[J].Phys Rev C,198531:1770.
[12] COLONNA M;TORO M DI;GUARNERA A.[J].Nucl Phys A,1998642:449.
[13] AICHELIN J;BERTSCH G.[J].Phys Rev C,198531:1730.
[14] FURUTA T;ONO A.[J].Phys Rev C,200979:014608.
[15] LIN W;LIU X;RODRIGUES M R D.[J].Phys Rev C,201489:021601.
[16] LIN W;LIU X;RODRIGUES M R D.[J].Phys Rev C,201490:044603.
[17] LIU X;LIN W;WADA R.[J].Phys Rev C,201490:014605.
[18] LIU X;LIN W;WADA R.[J].Nucl Phys A,2015933:290.
[19] LIN W;WADA R;HUANG M.[J].Nucl Scie and Tech,201324:050511.
[20] FISHER M E.[J].Rep Prog Phys,196730:615.
[21] HUANG M;CHEN Z;KOWALSKI S.[J].Phys Rev C,201081:044620.
[22] HUANG M;WADA R;CHEN Z.[J].Phys Rev C,201082:054602.
[23] CHEN Z;KOWALSKI S;HUANG M.[J].Phys Rev C,201081:064613.
[24] BONASERA A;CHEN Z;WADA R.[J].Phys Rev Lett,2008101:122702.
[25] ONO A;DANIELEWICZ P;FRIEDMAN W A.[J].Phys Rev C,200368:051601(R).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%