欢迎登录材料期刊网

材料期刊网

高级检索

为了开展空间环境中低能粒子对航天电子器件作用规律的研究,根据研究项目需要,研制一台1~50 keV的低能质子束装置。该装置具有无需机械调节即可对质子能量、注入面积、注量率等参数进行大范围调节的特点。装置设计紧凑、所占空间小、成本低。介绍了质子束装置的基本构成以及聚焦透镜、速度选择器、扫描器等主要元件的结构特点及优化措施。调试结果表明,装置的性能达到了预期的技术指标,在有效注入面积内可达90%以上的均匀度,并能够长期稳定运行,满足了研究的需要。

The particles in the space environment are an important factor for the abnormity of spacecraft. So, it’s necessary to study on the effect of low-energy particles to spacecraft. In view of this, a 1~50 keV low-energy proton implanter has been developed in China Institute of Atomic Energy. The implanter has the characteristics of its injection area, flux density and energy that could be adjusted in a wide range according to the requirement, almost no need mechanical change. The uniformity of the injected proton in available area is better than 90%. And the implanter has the advantages of compact structure and low cost. In this paper, the principle of implanter and the design of its main transport elements, such as lens, Wien filter and scanner, have been described. The experimental results show that the performance of the implanter meets to the demand of study. And the implanter runs steadily and reliably.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%