欢迎登录材料期刊网

材料期刊网

高级检索

以 C3 H6(丙烯)+H2,MTS+H2,CH4+BCl3+H2,C3 H6(丙烯)+BCl3+H2为先驱体,采用量子力学结合统计热力学、变分过渡态理论和反应动力学等方法,研究制备典型陶瓷(C,SiC 和 Bx C)的化学反应机理。重点阐述用精确量子化学方法获取可能中间体、过渡态的结构与热化学数据、用化学势极小原理确定复杂体系化学平衡规律,以及确定化学反应通道、最佳反应途径、速率常数和反应动力学规律等。为这些陶瓷材料应用于层状碳、抗氧化 SiC 以及自愈合 Bx C陶瓷的成分控制和工艺优化提供科学基础的同时,本文也指出理论方法中的不足和改进方向。

The chemical reaction mechanism of preparing typical ceramics (C,SiC and Bx C)was stud-ied,using C3 H6 (propylene)+H2 ,MTS+H2 +Ar,CH4 +BCl3 +H2 ,and C3 H6 (propylene)+BCl3 +H2 as precursors,and based on the quantum mechanics combined with statistical thermodynamics,var-iational transition state theory and chemical reaction kinetics.The thermochemistry data are predicted in a prescript high accuracy.The process is to determine as many as possible the reaction intermedi-ates and transition states,to develop their thermochemistry data,to examine the reaction thermody-namics properties of the reaction system,to identify the possible reaction pathways,to evaluate the rate constants of the most favorable paths,and to explore the reaction rates.These researches are sci-entifically instructive to the composition control and processing optimization for layered carbon,anti-oxidation SiC and self-healing Bx C.Problems concerning the theoretical methods are also proposed to be further studied.

参考文献

[1] SCHMIDT S;BEYER S;KNABE H et al.Advanced ceramic matrix composite materials for current and future propulsion tech-nology applications[J].Acta Astronautica,2003,55(03):409-420.
[2] NASL R .Design,preparation and properties of non-oxide CMCS for application in engines and nuclear reactors:An overview:Symposium on multifunctional materials and structures[J].Com-posites Science and Technology,2003,64(02):155-170.
[3] 王锟,陈刘定,郑翔.平纹编织C/SiC复合材料在室温和高温环境下的拉伸行为[J].航空材料学报,2010(01):78-84.
[4] Xu Yongdong;Cheng Laifei;Zhang Litong .Carbon /silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J].Carbon: An International Journal Sponsored by the American Carbon Society,1999(8):1179-1187.
[5] QUEMARDA L;REBILLAT F;GUETTE A et al.Self-heal-ing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments[J].Jour-nal of the European Ceramic Society,2007,27(04):2085-2094.
[6] 周新贵,张长瑞,何新波,李银奎,周安郴,曹英斌,马江.热解碳涂层碳纤维增强碳化硅复合材料热压工艺研究[J].材料工程,2000(03):39-41.
[7] 焦桓,周万城,李翔.CVD法水蒸气条件下制备SiC块体[J].材料工程,2000(12):12-14,18.
[8] SHOUJUN WU;LAIFEI CHENG;WENBIN YANG .Oxidation Protective Multilayer CVD SiC Coatings Modified by a Graphitic B-C Interlayer for 3-D C/SiC Composite[J].Applied composite materials,2006(6):397-406.
[9] FARIZY G;CHERMANT J L;SANGLEBOEUF J C et al.SiCf-SiBC composites:microstructural investigations of the as re-ceived material and creep tested composites under an oxidative en-vironment[J].JOURNAL OF MICROSCOPY-OXFORD,2003,210(02):176-186.
[10] 张立同,成来飞,徐永东,刘永胜,曾庆丰,董宁,栾新刚.自愈合碳化硅陶瓷基复合材料研究及应用进展[J].航空材料学报,2006(03):226-232.
[11] POPLE J A;HEAD-GORDON M;FOX D J et al.Gaussian-1 theory:a general procedure for prediction of molecular energies[J].The Journal of Chemical Physics,1989,90(10):5622-5629.
[12] CURTISS L A;JONES C;TRUCKS G W et al.Gaussian-1 theory of molecular energies for second-row compounds[J].The Journal of Chemical Physics,1990,93(04):2537-2545.
[13] CURTISS L A;RAGHAVACHARI K;TRUCKS G W et al.Gaussian-2 theory for molecular energies of first-and second-row compounds[J].The Journal of Chemical Physics,1991,94(11):7221-7230.
[14] CURTISS L A;RAGHAVACHARI K;POPLE J A .Gaussian-2 theory using reduced m?ller-pleset orders[J].The Journal of Chemical Physics,1993,98(02):1293-1298.
[15] CURTISS L A;CARPENTER J E;RAGHAVACHARI K et al.Validity of additivity approximations used in Gaussian-2 the-ory[J].The Journal of Chemical Physics,1992,96(12):9030-9034.
[16] CURTISS L A;RAGHAVACHARI K;REDFERN P C et al.Gaussian-3 theory for molecules congaining first and second-row atoms[J].,1998,109(18):7746-7754.
[17] Larry A. Curtiss;Paul C. Redfern;Krishnan Raghavachari;Vitaly Rassolov;John A. Pople .Gaussian-3 theory using reduced Moller-Plesset order[J].The Journal of Chemical Physics,1999(10):4703-4709.
[18] Anwar G. Baboul;Larry A. Curtiss;Paul C. Redfern;Krishnan Raghavachari .Gaussian-3 theory using density functional geometries and zero-point energies[J].The Journal of Chemical Physics,1999(16):7650-7657.
[19] Larry A.Curtiss;Paul C.Redfern;Krishnan Raghavachari .Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies[J].The Journal of Chemical Physics,2005(12):124107,1-2-0.
[20] Larry A.Curtiss;Paul C.Redfern;Krishnan Raghavachari .Gaussian-4 theory[J].The Journal of Chemical Physics,2007(8):084108,1-12-0.
[21] CURTISS L A;REDFERN P C;KRISHNAN R .Gaussian-4 theory using reduced order perturbation theory[J].The Journal of Chemical Physics,2007,127(12):124105-1241-8.
[22] NYDEN M R;PETERSSON G A .Complete basis set correla-tion energies.1.the asymptotic convergence of pair natural orbit-al expansions[J].The Journal of Chemical Physics,1981,75(04):1843-1862.
[23] PETERSSON G A;BENNETT A;TENSFELDT T G et al.A complete basis set model chemistry.1.The total energy of closed-shell atoms and hydrides of the first-row elements[J].The Journal of Chemical Physics,1988,89(04):2193-2218.
[24] PETERSSON G A;ALLAHAM M A .A complete basis set model chemistry.2.Open-shell systems and the total energies of the first-row atoms[J].The Journal of Chemical Physics,1991,94(09):6081-6090.
[25] PETERSSON G A;TENSFELDT T G;MONTGOMERY J A et al.A complete basis set model chemistry.3.The complete ba-sis set-quadratic configuration interaction family of methods[J].The Journal of Chemical Physics,1991,94(09):6091-6101.
[26] MONTGOMERY J A;OCHTERSKI J W;PETERSSON G A .A complete basis set model chemistry.4.an improved atomic pair natural orbital method[J].The Journal of Chemical Physics,1994,101(07):5900-5909.
[27] Ochterski JW.;Montgomery JA.;Petersson GA. .A COMPLETE BASIS SET MODEL CHEMISTRY .5. EXTENSIONS TO SIX OR MORE HEAVY ATOMS[J].The Journal of Chemical Physics,1996(7):2598-2619.
[28] MONTGOMERY J A;FRISCH M J;OCHTERSKI J W et al.A complete basis set model chemistry.6.Use of density function-al geometries and frequencies[J].The Journal of Chemical Phys-ics,1999,110(06):2822-2827.
[29] WOOD G P F;PETERSSON G A;BARNES E C et al.A re-stricted-open-shell complete-basis-set model chemistry[J].The Journal of Chemical Physics,2006,125(09):094106-091-16.
[30] BARNES E C;PETERSSON P A .MP2/CBS atomic and molec-ular benchmarks for H through Ar[J].The Journal of Chemical Physics,2010,132(11):114111-1141-9.
[31] DUMINDA S R;PETERSSON P A .CCSD(T)/CBS atomic and molecular benchmarks for H through Ar[J].The Journal of Chemical Physics,2013,138(14):144103-141-12.
[32] GE Y;GORDON M S;BATTAGLIA F et al.Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 1.thermodynamics[J].Journal of Physical Chemistry A,2007,111(08):1462-1474.
[33] DENG J L;SU K H;ZENG Y et al.Investigation of thermo-dynamic properties of gaseous SiC(X3Π and a1Σ)with accurate model chemistry calculations[J].Physical A:Statistical Me-chanics and Its Applications,2008,387(22):5440-5456.
[34] Yao XP;Su K;Deng JL;Wang X;Zeng QF;Cheng LF;Xu YD;Zhang LT .Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis[J].Computational Materials Science,2007(4):504-524.
[35] DENG J L;SU K H;YAO X P et al.Erratum to:''Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis[J].COMPUTATIONAL MATERIALS SCIENCE,2008,44(02):838-840.
[36] DAVID R L.CRC Handbook of Chemistry and Physics,77th ed[M].New York:CRC Press,1997
[37] CHASE M W;DAVIES C A;DOWNEY J R.NIST-JANAF Thermochemical Tables Forth Edition[M].New York:American Chemical Society and American Institute of Physics,1998
[38] DENG J L;SU K H;WANG X et al.Thermodynamics of the gas-phase reactions in the chemical vapor deposition of silicon-carbide with methyltrichlorosilane precursor[J].Theoretical Chemistry Account,2009,122(1 -2):1-22.
[39] Juanli Deng;Kehe Su;Qingfeng Zeng;Xin Wang;Laifei Cheng;Yongdong Xu;Litong Zhang .Thermodynamics of the Production of Condensed Phases in the CVD of Methyltrichlorosilane Pyrolysis[J].Chemical vapor deposition: CVD,2009(10/12):281-290.
[40] ZENG Q F;SU K H;ZHANG L T et al.Evaluation of the thermodynamic date of CH3 SiCl3 based on quantum chemistry calculations[J].Journal of Physical and Chemical Reference Date,2006,35(02):1385-1390.
[41] ZENG Y;SU K H;DENG J L et al.Thermodynamic investi-gation of the gas-phase reactions in the chemical vapor deposition of boron carbide with BCl3-CH4-H2 precursors[J].Journal of Molecular Structure Theochem,2008,861(1 -3):103-116.
[42] WANG T;SU K H;DENG J L et al.Reaction thermodynamic in chemical vapor deposition of boron carbide with BCl3-C3 H6-H2 precursors[J].Journal of Theoretical & Computational Chemistry,2008,7(06):1269-1312.
[43] 邓娟利 .CVD/CVI 制备自愈合 SiC 陶瓷基复合材料的反应热力学研究[D].西安:西北工业大学,2009.
[44] DENG J L;CHENG L F;ZHANG L T et al.Thermodynam-ics of the production of condensed phases in the chemical vapor deposition process of zirconium diboride with ZrCl4-BCl3-H2 pre-cursors[J].THIN SOLID FILMS,2012,520(06):2331-2335.
[45] DENG J L;CHENG L F;ZHANG L T et al.Thermodynamic on study co-deposition of ZrB2-SiC from ZrCl4-BCl3-CH3 SiCl3-H2 system[J].THIN SOLID FILMS,2012,520(23):7030-7034.
[46] DENG J L;CHENG L F;ZHENG G P et al.Thermodynamics on formation of condensed phases during CVD Si3 N4 process with SiCl4-NH3-H2 precursors[J].Advanced Engineering Mate-rials,2011,194-196:1516-1523.
[47] XUE J M;YIN X W;YE F et al.Thermodynamic analysis on the codeposition of SiC-Si3 N4 composite ceramics by chemical va-por deposition using SiCl4-NH3-CH4-H2-Ar mixture gases[J].Journal of the American Ceramic Society,2013,96(03):979-986.
[48] LIU Q F;ZHANG L T;LIU J et al.Thermodynamic study on codeposition of ZrC-SiC from MTS-ZrCl4-CH4-H2[J].Inorganic Materials,2010,46(10):1090-1095.
[49] LIU X F;ZHANG L T;LIU Y S et al.Thermodynamic calcu-lations on the chemical vapor deposition of Si-C-N from the SiCl4-NH3-C3 H6-H2-Ar system[J].Ceramics International,2013,39(04):3971-3977.
[50] QU Y N;SU K H;WANG X et al.Reaction pathways of pro-pene pyrolysis[J].Journal of Computational Chemistry,2009,31(07):1421-1442.
[51] 赵春年,成来飞,张立同,徐永东,卢翠英,叶昉.丙烯化学气相沉积热解碳的动力学研究[J].无机材料学报,2008(06):1165-1170.
[52] GE Y;GORDON M S;BATTAGLIA F et al.Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 2.reaction paths and transition states[J].Journal of Physical Chemistry A,2007,111(08):1475-1486.
[53] WANG X;SU K H;DENG J L et al.Initial decomposition of methyltrichlorosilane in the chemical vapor deposition of silicon-carbide[J].Computational and Theoretical Chemistry,2011,967(2-3):265-272.
[54] LIU Y;SU K H;ZENG Q F et al.Reaction paths of BCl3 +CH4 + H2 in the chemical vapor deposition process[J].Struc-tural Chemistry,2012,23(06):1677-1692.
[55] BERJONNEAU J;LANGLAIS F;CHOLLON G et al.Un-derstanding the CVD process of (Si)-B-C ceramics through FTIR spectroscopy gas phase analysis[J].Surface and Coatings Tech-nology,2007,201(16-17):7273-7285.
[56] Xiaoqiong Jiang;Kehe Su;Xin Wang .An investigation of the lowest reaction pathway of propene + BCl3 decomposition in chemical vapor deposition process[J].Theoretical chemistry accounts,2010(5/6):519-538.
[57] Uniform Design And Regression Analysis Of Lpcvd Boron Carbide From Bcl_3-ch_4-h_2 System[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2009(11):5729-5735.
[58] YANG J H;SU K H;LIU Y et al.New reaction paths of pro-pene + BCl3 decomposition in chemical vapor deposition process[J].Journal of Theoretical & Computational Chemistry,2012,11(01):53-85.
[59] TRUHLAR D G;GARRETT B C .Variational transition state theory[J].Annual Review of Physical Chemistry,1984,35:159-189.
[60] GONZALES-LAFONT A;TRUONG T N;TRUHLAR D G .Interpolated variational transition-state theory:practical meth-ods for estimating variational transition-state properties and tun-neling contributions to chemical reaction rates from electronic structure calculations[J].The Journal of Chemical Physics,1991,95(12):8875-8894.
[61] HAN P P;SU K H;WANG Y L et al.Reaction rate of pro-pene pyrolysis[J].Journal of Computational Chemistry,2011,32(13):2745-2755.
[62] GE Y;GORDON M S;BATTAGLIA F et al.Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3.reaction rate constant calculations[J].Journal of Physical Chemistry A,2010,114(06):2384-2392.
[63] 刘艳 .H2 O-SiC,(001)及 CH4-BCl3-H2 反应动力学研究[D].西安:西北工业大学,2012.
[64] YE F E;ZHANG L T;CHENG L F et al.Effect of tempera-ture on deposition process of boron doped carbon from BCI3-CH4-H2 by chemical vapor deposition[J].Materials Review,2010,24(07):108-115.
[65] XIAO J;SU K H;LIU Y et al.Decomposition reaction rate of BCl3-C3 H6-H2 in gas phase[J].Journal of Physical Chemistry A,2012,116(26):6955-6966.
[66] LIU Y S;ZHANG L T;CHENG Y S et al.Preparation and mechanical properties of carbon fiber reinforced (BCx-SiC)(n) multilayered matrix composites[J].Applied Composite Materi-als,2007,14(04):277-286.
[67] SΦLLING T I;SMITH D M;RADOM L et al.Towards mul-tireference equivalents of the G2 and G3 methods[J].Journal of Chemical Physics,2001,115(19):8758-8772.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%