欢迎登录材料期刊网

材料期刊网

高级检索

采用EMPA,SEM和XRD等手段,研究低碳硅锰钢在双相区保温淬火(I&Q)、双相区保温十奥氏体化十盐浴配分(I&Q&P)和奥氏体化十盐浴配分(Q&P)工艺中的C,Mn元素配分行为及对残余奥氏体的综合作用.结果表明:经I&Q工艺处理后,得到马氏体、铁素体加少量残余奥氏体混合组织,C,Mn在马氏体中出现了富集,并且C富集程度高于Mn;经I&Q&P工艺处理后,C,Mn在板条马氏体中呈现不均匀分布,C的局部富集现象更明显,按C,Mn含量的不同,马氏体可分为"高C高Mn"、"高C低Mn"和"低C低Mn"3种;相比较Q&P工艺中只有C配分作用稳定残余奥氏体,I&Q&P工艺在C,Mn配分综合作用下,能得到更多的残余奥氏体.

Low carbon Si-Mn steel was processed through the processes of intercritical annealing, quenching (I&Q),or the intercritical annealing,subsequent austenitizing,then quenching partition (I&Q&P)and the austenitizing,quenching partition (Q&P).The C,Mn partitioning behavior and their comprehensive effect on retained austenite were studied by means of electron microprobe analysis (EMPA),field emission scanning electron microscopy (SEM)and X-ray diffraction (XRD).The results show that the microstructure of low carbon Si-Mn steel is composed of martensite,ferrite and some retained austenite after treated by I&Q process.C,Mn in martensite of low carbon Si-Mn steel is enriched,and C enrichment level is higher than Mn level.After treated by I&Q&P process,C,Mn of steel exhibits nonuniform distribution in lath martensite,and the local enrichment of C is more obvious.The martensite can be divided into three forms of "high C high Mn","high C low Mn"and"low C low Mn"according to the different C and Mn contents .The content of retained austenite of the steel treated by I&Q&P process is higher under the comprehensive effect of C,Mn partitioning than that of Q&P process which is stabilized only by C partitioning.

参考文献

[1] SHIKANAI Nobuo;MITAO Shinji;ENDO Shigeru.Recent Development in Microstructural Control Technologies through the Thermo-Mechanical Control Process (TMCP) with JFE Steel's High-Performance Plates[J].JFE technical report,200811(11):1-6.
[2] 赵才;江海涛;唐荻;赵松山;程知松.Q&P钢塑性变形机制及组织-性能研究[J].材料工程,2009(2):19-23.
[3] 马鸣图;M.F.Shi.先进的高强度钢及其在汽车工业中的应用[J].钢铁,2004(7):68-72.
[4] 邢淑清;陆恒昌;麻永林;韩娜;李振团;陈重毅.800MPa级高强钢焊接粗晶区再热循环的组织转变规律[J].材料工程,2015(7):93-99.
[5] 陈林恒;康永林;黎先浩;温德智;刘国民.轧制工艺对CSP生产低碳贝氏体高强钢组织和性能的影响[J].材料工程,2009(9):47-50,60.
[6] Bruno C. De Cooman;John G. Speer.Quench and Partitioning Steel: a New AHSS Concept for Automotive Anti-Intrusion Applications[J].Steel Research International,20069/10(9/10):634-640.
[7] J. Speer;D. K. Matlock;B. C. De Cooman;J. G. Schroth.Carbon partitioning into austenite after martensite transformation[J].Acta materialia,20039(9):2611-2622.
[8] Seok-Jae Lee;Seawoong Lee;Bruno C. De Cooman.Mil partitioning during the intercritical annealing of ultrafine-gralned 6% Mn transformation-induced plasticity steel[J].Scripta materialia,20117(7):649-652.
[9] Yuki TOJI;Takako YAMASHITA;Katsumi NAKAJIMA.Effect of Mn Partitioning during Intercritical Annealing on Following γ->α Transformation and Resultant Mechanical Properties of Cold-rolled Dual Phase Steels[J].ISIJ International,20115(5):818-825.
[10] Emmanuel De Moor.Austenite stabilization through manganese enrichment[J].Scripta materialia,20112(2):185-188.
[11] 任勇强;谢振家;尚成嘉.低碳钢中残余奥氏体的调控及对力学性能的影响[J].金属学报,2012(9):1074-1080.
[12] 马少海;厉勇;王春旭;黄顺喆;韩顺;刘宪民.Q-P工艺下超高强度300M钢的单轴拉伸规律研究[J].航空材料学报,2014(3):42-47.
[13] 景财年;王作成.合金元素在相变诱发塑性钢中的作用[J].材料导报,2004(11):36-39.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%