采用Mn-Nb-B减量化成分设计的低碳贝氏体高强钢为研究对象,通过热模拟实验研究实验钢热变形行为和相变行为。结合中厚板生产线特点制定控制轧制与超快速冷却相结合生产工艺路线,充分利用超快速冷却条件下的细晶强化、析出强化等综合强化机制,实现综合力学性能优良的低成本高强工程机械用钢的试制和生产。产品屈服强度和抗拉强度分别达到678MPa和756MPa,伸长率A50为33%,-20℃低温冲击达到261J。产品显微组织由粒状贝氏体、针状铁素体和板条贝氏体组成,基体组织内弥散分布着细小的点状、粒状M/A岛和均匀细小的(Nb, Ti)(C, N)析出粒子以及大量位错组织。
Using the Mn-Nb-B low carbon bainite high strength steel with the reducing production technology as the research target, the deformation behavior and phase transformation behavior were studied by the thermal simulation testing machine. Combining with the characteristics of the medium and heavy plate production line, the controlled rolling and controlled cooling technology based on ultra-fast cooling were designed to produce low cost high strength construction machinery steel with superior comprehensive mechanical properties. The strengthening mechanisms such as grain refinement strengthening, precipitation strengthening are effective to produce the Mn-Nb-B low carbon bainite high strength steel. The yield strength and tensile strength of the product reach to 678MPa and 756 MPa respectively, the elongation A50 is 33% and the impact energy at-20℃is 261J. The microstructure of the steel is composed of granular bainite, acicular ferrite and lath bainite. A large number of fine, point, granular M/A constituents and dislocation structures dispersively distributed inside the matrix, and also tiny and dispersed (Nb, Ti) (C, N) precipitates are observed by transmission electron microscopy.
参考文献
[1] | OUCHI C. Development of steel plates by intensive use of TMCP and direct quenching processes[J]. ISIJ International, 2001, 41(6):542-553. |
[2] | RODRIGUES P C M, PERELOMA E V, SANTOS D B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering:A, 2000, 283(1):136-143. |
[3] | WANG G D. A new generation of controlled rolling and controlled cooling technology and innovative hot rolling process[J]. Journal of Northeastern University (Natural Science), 2009, 30(7):913-922. 王国栋.新一代控制轧制和控制冷却技术与创新的热轧过程[J].东北大学学报(自然科学版), 2009, 30(7):913-922. |
[4] | ZHOU X G, WANG M, LIU Z Y, et el. Effect of ultra-fast cooling on microstructure and mechanical properties of X70 pipeline steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(9):80-84. 周晓光, 王猛, 刘振宇, 等.超快冷对X70管线钢组织和性能的影响[J].材料热处理学报, 2013, 34(9):80-84. |
[5] | ZHOU C, YE Q B, YAN L. Effect of ultra-fast cooling process on microstructure and properties of high strength ship plate[J]. Transactions of Materials and Heat Treatment, 2014, 35(7):161-166. 周成, 叶其斌, 严玲.超快冷工艺对高强船板组织与性能的影响[J].材料热处理学报, 2014, 35(7):161-166. |
[6] | LIU Z Y, TANG S, ZHOU X G, et al. Basic principle of hot rolled steel microstructure using new generation TMCP process[J]. China Metallurgical, 2013, 23(4):10-16. 刘振宇, 唐帅, 周晓光, 等.新一代TMCP工艺下热轧钢材显微组织的基本原理[J].中国冶金, 2013, 23(4):10-16. |
[7] | ZHOU X G, WANG M, LIU Z Y, et al. Research of ferritic phase transformation zone precipitation and model under the condition of ultra-fast cooling[J]. Journal of Materials Engineering, 2014, (9):1-7. 周晓光, 王猛, 刘振宇, 等.超快冷条件下含Nb钢铁素体相变区析出及模型研究[J].材料工程, 2014, (9):1-7. |
[8] | TAKAKI S, FUJIOKA M, AIHARA S, et al. Effect of copper on tensile properties and grain-refinement of steel and its relation to precipitation behavior[J]. Materials Transactions, 2004, 45(7):2239-2244. |
[9] | WANG X M, SHANG C J, YANG S W, et al. Optimization of RPC technique for refining the intermediate transformation microstructure[J]. Journal of University of Science and Technology Beijing, 2002, 9(3):193-196. |
[10] | WANG X M, HE X L, YANG S W, et al. Refining of intermediate transformation microstructure by relaxation processing[J]. ISIJ International, 2002, 42(12):1553-1559. |
[11] | JUN H J, KANG J S, SEO D H, et al. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels[J]. Materials Science and Engineering:A, 2006, 422(1-2):157-162. |
[12] | HARA T, ASAHI H, UEMORI R, et al. Role of combined addition of niobium and boron and of molybdenum and boron on hardenability in low carbon steels[J]. ISIJ International, 2004, 44(8):1431-1440. |
[13] | ZHU K Y, OBERBILLIG C, MUSIK C, et al. Effect of B and B plus Nb on the bainitic transformation in low carbon steels[J]. Materials Science and Engineering:A, 2011, 528(12):4222-4231. |
[14] | LIU D S, WANG G D, LIU X H, et al. Effect of austenite deformation on continuous cooling transformation of low carbon Mn-B-Nb-Ti steel[J]. Acta Metallurgica Sinica, 1999, 35(8):816-822. 刘东升, 王国栋, 刘相华, 等.奥氏体变形对低碳Mn-B-Nb-Ti钢连续冷却相变的影响[J].金属学报, 1999, 35(8):816-822. |
[15] | SHEN B, HUANG C B, SUN C N, et al. Effect of deformation energy onγ→αtransformation of high strength ship plate steel[J]. Shanghai Metals, 2014, 36(3):15-19. 沈斌, 黄潮滨, 孙彩娜, 等.变形储能对高强度船板钢γ→α相变的影响[J].上海金属, 2014, 36(3):15-19. |
[16] | CHEN J, TANG S, LIU Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel[J]. Materials Science and Engineering:A, 2013, 559:241-249. |
[17] | HU J, DU L X, WANG J J, et al. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling[J]. Materials Science and Engineering:A, 2013, 585:197-204. |
[18] | GLADMAN T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999, 15(1):30-36. |
[19] | CHEN J, TANG S, LIU Z Y, et al. Effect of cooling mode on microstructure, property and precipitation of Nb-Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2012, 48(4):441-449. 陈俊, 唐帅, 刘振宇, 等.冷却方式对Nb-Ti微合金钢组织性能及沉淀行为的影响[J].金属学报, 2012, 48(4):441-449. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%