欢迎登录材料期刊网

材料期刊网

高级检索

应用加工硬化理论探讨了SAE9310钢在大应变条件下的加工硬化率曲线及动态再结晶的拐点判据,根据在变形温度为900~ 1200℃、应变速率为0.01~ 10s-1条件下的等温恒应变速率压缩实验,采用拐点判据方法和金相观察手段,研究了SAE9310钢发生动态再结晶的临界条件,建立了该钢的动态再结晶状态图.结果表明,在本实验条件下,SAE9310钢的流变曲线呈现两种特征类型;发生动态再结晶的临界应变εc和临界应力αc均随应变速率的增大和变形温度的降低而增加;临界应变与峰值应变之间满足εc/εp=0.30~0.42;随着Z参数的增加,临界变形量增大,材料发生动态再结晶变得困难.

参考文献

[1] 欧阳德来,鲁世强,崔霞,董显娟,吴超,邱伟.应用加工硬化率研究TA15钛合金β区变形的动态再结晶临界条件[J].航空材料学报,2010(02):17-23.
[2] E.I.POLIAK;J.J.JONAS .A ONE-PARAMETER APPROACH TO DETERMINING THE CRITICAL CONDITIONS FOR THE INITIATION OF DYNAMIC RECRYSTALLIZATION[J].Acta materialia,1996(1):127-136.
[3] E. I. POLIAK;J. J. JONAS .Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation[J].ISIJ International,2003(5):684-691.
[4] G.V.S.S. Prasad;M. Goerdeler;G. Gottstein .Work hardening model based on multiple dislocation densities[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(0):231-233.
[5] ROLLETT A D;KOCKS U F.A review of the stages of work hardening[J].Solid State Phenomena,1993:35-361-18.
[6] G. Gottstein;E. Brunger;M. Frommert;M. Goerdeler;M. Zeng .Prediction of the critical conditions for dynamic recrystallization in metals[J].Zeitschrift fur Metallkunde,2003(5):628-635.
[7] E. I. POLIAK;J. J. JONAS .Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation[J].ISIJ International,2003(5):692-700.
[8] Abbas NAJAFIZADEH;John J. JONAS .Predicting the Critical Stress for Initiation of Dynamic Recrystallization[J].ISIJ International,2006(11):1679-1684.
[9] 黄光杰,钱宝华,汪凌云,J.J.Jonas.AZ31镁合金初始动态再结晶的临界条件研究[J].稀有金属材料与工程,2007(12):2080-2083.
[10] 周凤云,李熙章.高强度渗碳钢制构件的断裂分析[J].理化检验-物理分册,2003(04):206-209.
[11] 吴秋平,王春旭,刘宪民,厉勇.回火温度对9310钢力学性能及组织的影响[J].热加工工艺,2012(06):179-180,183.
[12] 黄顺喆,厉勇,王春旭,刘宪民.9310钢的奥氏体晶粒长大规律研究[J].热加工工艺,2010(18):31-33.
[13] 厉勇,王春旭,刘宪民,田志凌,许广鹏,赵肃武.SAE9310钢奥氏体的冷却转变行为[J].机械工程材料,2010(05):12-15.
[14] ESTRIN Y .Dislocation theory based constitutive modeling:foundations and applications[J].Journal of Materials Processing Technology,1998,80:8133-8139.
[15] UUN T;ZEHETBAUER M .Stage Ⅳ work hardening in cell forming materials,part Ⅱ:a new mechanism[J].Scripta Materialia,1996,35(12):1467-1473.
[16] GOTTSTEIN G;FROMMERT M;GOERDELER M et al.Prediction of the critical conditions for dynamic recrystallization in the austenitic steel 800H[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2004,387:389604-389608.
[17] NABARRO F;BASINSKI Z S;HOLT D B .The plasticity of pure single crystals[J].ADVANCES IN PHYSICS,1964,13(50):193-323.
[18] MECKING H;KOCKS U F .Kinetics of flow and strain hardening[J].Acta Metall,1981,29(11):1865-1875.
[19] KOCKS U F .Laws of work hardening and low-temperature creep[J].Journal of Engineering Materials and Technology,1976,98(01):76-85.
[20] GIL S J;VAN H P;AERNOUDT E .Large strain work hardening and textures[J].Progressing Materials Science,1980,25(2-4):69-134.
[21] MECKING H.Dislocation modeling of physical systems[M].Oxford:Pergamon Press,1981:197-211.
[22] E. I. POLIAK;J. J. JONAS .Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation[J].ISIJ International,2003(5):684-691.
[23] MEDINA S F;HERNANDEZ C A .General expression of Zener-Hollomon parameter as a function of the chemical composition of low alloy and micro-ally steels[J].Acta Materialia,1996,44(01):137-1548.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%