欢迎登录材料期刊网

材料期刊网

高级检索

镁合金作为最轻质的结构材料,在电子产品及汽车工业领域具有广泛的应用前景。相比于非稀土镁合金,稀土镁合金具有强度高且高温性能好的优点,而成为研究热点之一。本文重点介绍了高稀土含量镁合金和低稀土含量镁合金的强韧化方法。高稀土含量的镁合金可以调控三角分布的棱柱面片状析出相β′,阻碍位错滑移,提高合金强度。低稀土含量的镁合金可以采用表面机械研磨处理方法得到表面含有纳米晶中心含有孪晶的梯度组织,利用细晶强化和孪晶强化提高合金强度。

Magnesium alloys are the lightest structural alloys developed so far and have a great potential for lightweight applications, ranging from portable electronic devices to automobile parts. Comparing to Mg alloys containing no rare earth ( RE) , Mg-RE alloys at-tracted more and more attentions due to the higher strengths at both room temperature and elevated temperature. Strengthening methods for Mg alloys with high RE contents and low RE contents were introduced respectively in this paper. For Mg alloys with high RE con-tents, precipitates ofβ′lying in the triangular prismatic plates can impede dislocation slip effectively to enhance the strength of the al-loy. For Mg alloys with low RE contents, the microstructure containing nano grains in the surface layer and twinning in the center can be obtained by surface mechanical attrition treatment. Thus the Mg alloy can be strengthened by both refinement strengthening of nano grains and twinning strengthening of RE segregated twin boundaries.

参考文献

[1] I.J.Polmear.Recent Developments in Light Alloys[J].Materials transactions,19961(1):12-31.
[2] 韩修柱;逢锦程;张绪虎;单德彬;刘楚明.等温锻造Mg-10Gd-2Y-0.5Zn-0.3Zr稀土镁合金组织性能[J].航空材料学报,2015(6):8-13.
[3] 鲁志龙;张大童;张文;邱诚.不同冷却介质下多道次搅拌摩擦加工对 AZ91镁合金组织和性能影响[J].航空材料学报,2016(1):33-38.
[4] 丁文江;吴玉娟;彭立明;曾小勤;林栋樑;陈彬.高性能镁合金研究及应用的新进展[J].中国材料进展,2010(8):37-45.
[5] 何运斌;潘清林;刘晓艳;李文斌.ZK60镁合金均匀化过程中的组织演变[J].航空材料学报,2011(3):14-20.
[6] 何上明 .Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D].上海交通大学,2007.
[7] XIAOYING SHI;DEJIANG LI;ALAN A. LUO.Microstructure and Mechanical Properties of Mg-7AI-2Sn Alloy Processed by Super Vacuum Die-Casting[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,201310(10):4788-4799.
[8] Shi, Xiaoying;Luo, Alan A.;Sutton, Scott C.;Zeng, Long;Wang, Shiyi;Zeng, Xiaoqin;Li, Dejiang;Ding, Wenjiang.Twinning behavior and lattice rotation in a Mg-Gd-Y-Zr alloy under ballistic impact[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015:622-632.
[9] Shi, Xiaoying;Zou, Jianxin;Liu, Chuan;Cheng, Lifang;Li, Dejiang;Zeng, Xiaoqin;Ding, Wenjiang.Study on hydrogenation behaviors of a Mg-13Y alloy[J].International journal of hydrogen energy,201416(16):8303-8310.
[10] 刘鹏;江海涛;段晓鸽;康强.稀土元素Y和Ce对热轧Mg-1.5Zn镁合金组织和室温成形性能的影响[J].材料工程,2014(12):1-10.
[11] 唐甜;张丁非;孙静;胡光山;胥钧耀;潘复生.Sn对时效态ZM61镁合金高温力学性能的影响[J].材料工程,2016(11):9-15.
[12] S. CELOTTO.TEM STUDY OF CONTINUOUS PRECIPITATION IN Mg--9 Wt/100Al--l Wt/100Zn ALLOY[J].Acta materialia,20008(8):1775-1787.
[13] Chen Jihua;Chen Zhenhua;Yan Hongge.Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20081/2(1/2):209-215.
[14] Elsayed, F.R.;Sasaki, T.T.;Mendis, C.L.;Ohkubo, T.;Hono, K..Compositional optimization of Mg-Sn-Al alloys for higher age hardening response[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:22-29.
[15] ALAN A. LUO;PENGHUAI FU;LIMING PENG.Solidification Microstructure and Mechanical Properties of Cast Magnesium-Aluminum-Tin Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20121(1):360-368.
[16] Xiao, W.;Jia, S.;Wang, L.;Wu, Y.;Wang, L..Effects of Sn content on the microstructure and mechanical properties of Mg-7Zn-5Al based alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201026(26):7002-7007.
[17] Smola B.;Stulikova I.;von Buch F.;Mordike BL..Structural aspects of high performance Mg alloys design[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20021-2 Special Issue SI(1-2 Special Issue SI):113-117.
[18] Vostry P.;Stulikova I.;Von Buch F.;Mordike B.L.;Smola B..Microstructure evolution in isochronally heat treated Mg-Gd alloys[J].Physica Status Solidi, A. Applied Research,19992(2):491-500.
[19] J.F. Nie.Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J].Scripta materialia,20038(8):1009-1015.
[20] K. S. Kumar;H. Van Swygenhoven;S. Suresh.Mechanical behavior of nanocrystalline metals and alloys[J].Acta materialia,200319(19):5743-5774.
[21] M.A. Meyers;A. Mishra;D.J. Benson.Mechanical properties of nanocrystalline materials[J].Progress in materials science,20064(4):427-556.
[22] X. C. Liu;H. W. Zhang;K. Lu.Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel[J].Science,2013Oct.18 TN.6156(Oct.18 TN.6156):337-340.
[23] Niels Hansen.Hall–Petch relation and boundary strengthening[J].Scripta materialia,20048(8):801-806.
[24] C.S. Pande;B.B. Rath;M.A. Imam.Effect of annealing twins on Hall-Petch relation in polycrystalline materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):171-175.
[25] W.J. Kim;Y.G. Lee;M.J. Lee.Exceptionally high strength in Mg-3Al-lZn alloy processed by high-ratio differential speed rolling[J].Scripta materialia,201112(12):1105-1108.
[26] F.M. Lu;A.B. Ma;J.H. Jiang.Formation of profuse long period stacking ordered microcells in Mg-Gd-Zn-Zr alloy during multipass ECAP process[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:140-145.
[27] Nairong Tao;Hongwang Zhang;Jian Lu;Ke Lu.Development of Nanostructures in Metallic Materials with Low Stacking Fault Energies During Surface Mechanical Attrition Treatment (SMAT)[J].Materials transactions,200310(10):1919-1925.
[28] N. R. Tao;Z. B. Wang;W. P. Tong;M. L. Sui;J. Lu;K. Lu.An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J].Acta materialia,200218(18):4603-4616.
[29] A.Y. Chen;H.H. Ruan;J. Wang.The influence of strain rate on the microstructure transition of 304 stainless steel[J].Acta materialia,20119(9):3697-3709.
[30] K. Wang;N.R. Tao;G. Liu.Plastic strain-Induced grain refinement at the nanometer scale in copper[J].Acta materialia,200619(19):5281-5291.
[31] Wu X;Tao N;Hong Y;Liu G;Xu B;Lu J;Lu K.Strain-induced grain refinement of cobalt during surface mechanical attrition treatment[J].Acta materialia,20053(3):681-691.
[32] H. W. Zhang;Z. K. Hei;G. Liu;J. Lu;K. Lu.Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J].Acta materialia,20037(7):1871-1881.
[33] K.Y. Zhu;A. Vassel;F. Brisset.Nanostructure formation mechanism of alpha-titanium using SMAT[J].Acta materialia,200414(14):4101-4110.
[34] H.Q. Sun;Y.-N. Shi;M.-X. Zhang.Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J].Acta materialia,20073(3):975-982.
[35] H.L. Chan;H.H. Ruan;A.Y. Chen;J. Lu.Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment[J].Acta materialia,201015(15):5086-5096.
[36] Shi, X. Y.;Liu, Y.;Li, D. J.;Chen, B.;Zeng, X. Q.;Lu, J.;Ding, W. J..Microstructure evolution and mechanical properties of an Mg-Gd alloy subjected to surface mechanical attrition treatment[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:146-154.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%