欢迎登录材料期刊网

材料期刊网

高级检索

建立动态模糊径向基神经网络RBF( Radial Basis Function,RBF)焊接接头力学性能预测模型,克服静态RBF和模糊神经网络( Fuzzy Neural Network,FNN)在结构辨识、动态样本训练及学习算法的不足。该模型的结构参数不再提前预设,在训练过程中动态自适应调整,适用动态样本数据学习,学习算法引入分级学习和模糊规则修剪策略,加速训练并使模型结构更加紧凑。利用三种厚度、不同工艺TC4钛合金TIG焊接试验数据对该模型进行仿真。结果表明:模型具有较高的预测精度,适用于预测焊接接头力学性能,为焊接过程在线控制开辟了新的途径。

A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the train-ing speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for pre-dicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

参考文献

[1] Adel Mellit;Mohamed Benghanem.Sizing of stand-alone photovoltaic systems using neural network adaptive model[J].Desalination: The International Journal on the Science and Technology of Desalting and Water Purification,20071/3(1/3):64-72.
[2] 张永志;董俊慧;张艳飞.基于径向基神经网络焊接接头力学性能预测[J].焊接学报,2008(7):81-84.
[3] 唐正魁,董俊慧,张永志.基于RBF神经网络预测接头力学性能的优化算法研究[C].2009现代焊接科学与技术学术会议论文集,2009:93-97.
[4] 张永志;董俊慧.两种预测焊接接头力学性能的模糊神经网络[J].焊接学报,2011(11):104-107.
[5] 张永志;董俊慧.基于模糊C均值聚类的模糊RBF神经网络预测焊接接头力学性能建模[J].机械工程学报,2014(12):58-64.
[6] 吕其兵;谭克利;骆德阳;谭洪涛.基于RBF神经网络的钢轨交流闪光焊接头灰斑面积预测[J].焊接学报,2008(2):93-96.
[7] 王清;那月;孙东立;卢玉红;邓德军;杨于银.GH99合金TIG焊接接头拉伸性能的人工神经网络预测[J].焊接学报,2010(3):77-80.
[8] 张旭明;吴毅雄;徐滨士;董世运.BP神经网络及其在焊接中的应用[J].焊接,2003(2):9-13.
[9] A. Fathi;A.A. Aghakouchak.Prediction of fatigue crack growth rate in welded tubular joints using neural network[J].International Journal of Fatigue,20072(2):261-275.
[10] Shiqian Wu;Meng Joo Er.Dynamic Fuzzy Neural Networks-A Novel Approach to Function Approximation[J].IEEE transactions on systems, man, and cybernetics, Part B. Cybernetics: A publication of the IEEE Systems, Man, and Cybernetics Society,20002(2):358-364.
[11] 倪志盛;王明彦.基于动态模糊神经网络的多余力矩抑制方法[J].哈尔滨工业大学学报,2012(10):79-83.
[12] 马草原;刘建峰;毛家松;贾锋.基于D-FNN的电网混沌振荡系统的自适应控制[J].电测与仪表,2012(4):51-54.
[13] Shiqian Wu;Meng Joo Er;Yang Gao.A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J].IEEE Transactions on Fuzzy Systems: A Publication of the IEEE Neural Networks Council,20014(4):578-594.
[14] Chen S.;Cowan C.F.N..Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Transactions on Neural Networks,19912(2):302-309.
[15] Daya Ram;Laxmi Srivastava;Manjaree Pandit;Jaydev Sharma.Corrective action planning using RBF neural network[J].Applied Soft Computing,20071/4(1/4):1055-1063.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%