欢迎登录材料期刊网

材料期刊网

高级检索

传统观点认为酶促反应并不会影响酶本身的扩散运动。最近的研究表明,在酶促反应过程中,酶分子的扩散系数会增大,而且其增大强度具有底物依赖性,即随着底物浓度的增加而增大。酶促反应分子马达,是利用酶促反应过程中产生的能量驱动纳米或微米级物体的运动。尽管在几种不同的酶体系中的研究已经证实了酶在催化过程中的底物依赖性,但是造成酶扩散增强的原因至今仍不清楚。本文从酶促反应过程中酶自身扩散系数的变化、酶自身扩散系数变化的可能机理及其应用等3个方面,对酶在催化过程中的底物依赖性以及酶促分子马达的研究进展进行了综述。

It is traditionally assumed that enzymatic reaction does not perturb the diffusion of an enzyme iteself. Recent studies have shown that the diffusivity of enzymed increased in a substrate-dependent manner during catalysis. Thus, the energy released during enzyme catalysis can be used to propel nanoscale objects, e.g. molecule motors driven by enzymatic reactions. Although the dependence of enzyme diffusion on substrate has been reported in several different enzyme systems, the precise origin of this phenomenon is still unknown yet. However, sevral possible mechainsms have been proposed for the enhanced diffusion. This review illustrates recent progresses in the research on the influences of enzymatic reaction on the diffusivity of enzyme, including the change of diffusion coefficient of enzymes, potential mechanisms and related applications.

参考文献

[1] Riedel C, Gabizon R, Wilson C A, Hamadani K, Tsekouras K, Marqusee S, Presse S, Bustamante C.. Nature, 2015,517(7533):227-230
[2] Yadav V, Duan W, Butler P J, Sen A.. Annu. Rev. Biophys., 2015,44(1):77-100
[3] Puchner E M, Gaub H E.. Annu. Rev. Biophys., 2012,41(1):497-518
[4] Goel A, Vogel V.. Nat. Nanotechnol., 2008,3(8):465-475
[5] Sengupta S, Dey K K, Muddana H S, Tabouillot T, Ibele M E, Butler P J, Sen A.. J. Am. Chem. Soc., 2013,135(4):1406-1414
[6] Lipowsky R, Beeg J, Dimova R, Klumpp S, Liepelt S, Muller M J I, Valleriani A.. Biophys. Rev. Lett., 2009,4(01n02):77-137
[7] Adler J.. Science, 1969,166(3913):1588-1597
[8] Berg H C, Brown D A.. Nature, 1972,239(1):500-504
[9] Sengupta S, Patra D, Ortiz-Rivera I, Agrawal A, Shklyaev S, Dey K K, Co'rdova-Figueroa U, Mallouk T E, Sen A.. Nat. Chem., 2014,6(5):415-422
[10] Yu H, Jo K, Kounovsky K L, de Pablo J J, Schwartz D C.. J. Am. Chem. Soc., 2009,131(16):5722-5723
[11] Muddana H S, Sengupta S, Mallouk T E, Sen A, Butler P J.. J. Am. Chem. Soc., 2010,132(7):2110-2111
[12] Dey K K, Zhao X, Tansi B M, Mendez-Ortiz W J, Cordova-Figueroa U M, Golestanian R, Sen A.. Nano. Lett., 2015,15(12):8311-8315
[13] Wang W, Duan W, Ahmed S, Sen A, Mallouk T E.. Acc. Chem. Res., 2015,48(7):1938-1946
[14] Sengupta S, Ibele M E, Sen A.. Angew. Chem. Int. Ed., 2012,51(34):8434-8445
[15] Sanchez S, Soler L, Katuri J.. Angew. Chem. Int. Ed., 2015,54(5):1414-1444
[16] Wang H, Pumera M.. Chem. Rev., 2015,115(16):8704-8735
[17] Campuzano S, Kagan D, Orozco J, Wang J.. Analyst, 2011,136(22):4621-4630
[18] Guix M, Mayorga-Martinez C C, Merkoci A.. Chem. Rev., 2014,114(12):6285-6322
[19] Hong Y, Blackman N M, Kopp N D, Sen A, Velegol D.. Phys. Rev. Lett., 2007,99(17):178103
[20] Baraban L, Harazim S M, Sanchez S, Schmidt O G.. Angew. Chem. Int. Ed., 2013,52(21):5552-5556
[21] Bunea A-I, Pavel I-A, David S, Gaspar S.. Biosens. Bioelectron., 2015,67:42-48
[22] Baraban L, Tasinkevych M, Popescu M N, Sanchez S, Dietrich S, Schmidt O G.. Soft. Matter., 2012,8(1):48-52
[23] Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A.. Nanoscale, 2013,5(4):1273-1283
[24] Wang W, Duan W, Ahmed S, Mallouk T E, Sen A.. Nano Today, 2013,8(5):531-554
[25] Zhang H, Duan W, Liu L, Sen A.. J. Am. Chem. Soc., 2013,135(42):15734-15737
[26] Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, Mitragotri S, Alexeev A, Di Carlo D.. Phys. Rev. X, 2012,2(3):031017
[27] Ito Y, Shinomiya K.. J. Clin. Apheresis, 2001,16(4):186-191
[28] Kwon K W, Choi S S, Lee S H, Kim B, Lee S N, Park M C, Kim P, Hwang S Y, Suh K Y.. Lab Chip, 2007,7(11):1461-1468
[29] Cui H, Voldman J, He X, Lim K.. Lab Chip, 2009,9(16):2306-2312
[30] Weigl B H, Yager P.. Science, 1999, 283(5400):346-347
[31] Dey K K, Das S, Poyton M F, Sengupta S, Butler P J, Cremer P S, Sen A.. ACS Nano, 2014,8(12):11941-11949
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%