欢迎登录材料期刊网

材料期刊网

高级检索

分别论述了等通道转角挤压法与连续变断面循环挤压法这两种大塑性变形方法的工艺原理、工艺流程、模具结构、变形特征以及累积应变量与模具结构参数之间的关系;并系统介绍了这两种方法在制备纯铝、镁合金及钛合金细晶材料方面的应用,明确了连续变断面循环挤压法与等通道转角挤压法均是细化合金组织,提高材料强度、塑性等综合性能的有效途径.通过分析对比,提出这两种大塑性变形方法各自的优势和存在的问题,以及未来的发展方向.

参考文献

[1] Valiev R .Materials science - Nanomaterial advantage[J].Nature,2002(6910):887,889-0.
[2] Valiev R Z;Korznikov A V;Mulyukov R R .Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,1993,168(02):141.
[3] 李强,赖祖涵.高纯铝等通道转角挤压引起的微观组织变化[J].兵器材料科学与工程,2001(06):33-36.
[4] A.P. Zhilyaev;G.V. Nurislamova;B.-K. Kim .Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion[J].Acta materialia,2003(3):753-765.
[5] Saito Y.;Tsuji N.;Sakai T.;Utsunomiya H. .Novel ultra-high straining process for bulk materials - Development of the accumulative roll-bonding (ARB) process[J].Acta materialia,1999(2):579-583.
[6] Richert J;Richert M .A new method for unlimited deformation of metals and alloys[J].Aluminium,1986,62(08):604.
[7] Zherebtsov S V;Salishchev G A;Galeyev R M.Formation of submicrocrystalline structure in large-scale Ti6Al-4V billets during warm severe plastic deformation[A].Weinheim,Germany:Wiley-VCH Verlag,2004:835.
[8] 陈明,刘长瑞,杜忠泽,王庆娟.连续变断面体挤压过程金属的变形特征[J].热加工工艺,2007(17):43-45.
[9] Wang Q J;Zhang P P;Liu C R .Principle of the continuous variable cross-section recycled extrusion (CVCE) process[J].Adv Mater Res,2012,418:1400.
[10] Segal V M;Reznikov V I;Drobyshevskii A E.Plastic working of metals by simple shear[J].Russ Met,1981(01):99.
[11] Zhilyaev AP;Kim BK;Szpunar JA;Baro MD;Langdon TG .The microstructural characteristics of ultratine-grained nickel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):377-389.
[12] 张忠明,王锦程,唐文亭,郭学锋,杨根仓.等通道转角挤压(ECAP)工艺的研究现状[J].铸造技术,2004(01):10-12.
[13] LI Miaoquan,ZHANG Chen,LUO Jiao,FU Mingwang.Thermomechanicai coupling simulation and experimental study in the isothermal ECAP processing of Ti-6Al-4V alloy[J].稀有金属(英文版),2010(06):613-620.
[14] Ko Y G;Kim W G;Lee C S et al.Microstructural influence on low-temperature superplasticity of ultrafine-grained Ti6Al-4V alloy[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2005,410:156.
[15] Kim I.;Kim J.;Shin DH.;Lee CS.;Hwang SK. .Effects of equal channel angular pressing temperature on deformation structures of pure Ti[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):302-310.
[16] 雷力明,黄旭,段锐,曹春晓.等通道转角挤压工艺研究进展[J].材料工程,2009(05):76-80.
[17] Kim H S;Seo M H;Hong S I .Plastic deformation analysis of metal during equal channel angular pressing[J].J Mater Process Techn,2001,113(03):622.
[18] Oh-ishi K.;Smith DJ.;Langdon TG.;Horita Z. .Grain boundary structure in Al-Mg and Al-Mg-Sc alloys after equal-channel angular pressing[J].Journal of Materials Research,2001(2):583-589.
[19] 西安建筑科技大学 .连续变断面循环挤压制备细晶材料的方法与装置[P].中国,ZL200610041960,8,2006-09-06.
[20] 王金锋,白朴存,张秀云,侯小虎,任永岗.ECAP对纯铝拉伸性能和断裂行为影响的研究[J].航空材料学报,2009(03):33-38.
[21] Reihanian M;Ebrahimi R;Tsuji N;Moshksar MM .Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP)[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):189-194.
[22] 田景来 .ECAP纯铝L2的组织与性能研究[D].西安理工大学,2005.
[23] Mohamed Ibrahim Abd El Aal;Nahed El Mahallawy;Farouk A. Shehata .Tensile Properties and Fracture Characteristics of ECAP-Processed Al and Al-Cu Alloys[J].Metals and Materials International,2010(5):709-716.
[24] C.Y. Yu;P.L. Sun;P.W. Kao .Evolution of microstructure during annealing of a severely deformed aluminum[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(2):310-317.
[25] 张忠明,徐春杰,田景来,王锦程,郭学锋.ECAP挤压L2纯铝的微观组织演化规律[J].西安理工大学学报,2005(03):227-231.
[26] 刘长瑞,王庆娟,杜忠泽,王快社,陈明.连续变断面循环挤压制备细晶材料的新方法[J].稀有金属材料与工程,2009(z1):257-260.
[27] 张娟,刘长瑞,王庆娟,王快社,马正强.纯铝1A85连续变断面循环挤压过程的组织演变[J].材料科学与工程学报,2010(06):930-933.
[28] Figueiredo, RB;Langdon, TG .Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):105-114.
[29] Miyahara Y;Horita Z;Langdon T G .Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2006,420(01):240.
[30] 丁业立,王刚,徐志良.等通道转角挤压对AZ80A镁合金晶粒细化的影响[J].热加工工艺,2011(03):89-91.
[31] OLEG SITDIKOV;ELENA AVTOKRATOVA;TAKU SAKAI .Ultrafine-Grain Structure Formation in an Al-Mg-Sc Alloy During Warm ECAP[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2013(2):1087-1100.
[32] JIANG Da-ming,NING Jiang-li,SUN Jian-feng,HU Zhi-min,HOU Yi.Annealing behavior of Al-Mg-Mn alloy processed by ECAP at elevated temperature[J].中国有色金属学会会刊(英文版),2008(02):248-254.
[33] 刘英,陈维平,张卫文,朱权利,赵海东.等通道转角挤压后AZ31镁合金的微观结构与性能[J].华南理工大学学报(自然科学版),2004(09):50-53.
[34] 丁茹,刘长瑞,王成,任红霞.连续变断面循环挤压AZ31镁合金的微观组织与力学性能[J].材料科学与工程学报,2009(04):617-619.
[35] 刘长瑞,任红霞,王庆娟.连续变断面循环挤压AZ31镁合金的组织与性能[J].轻合金加工技术,2009(07):34-37.
[36] 付明杰;司家勇;张继 .TB2钛合金等通道转角挤压变形过程中的应变分析及实验研究[J].塑性工程学,2010,17(05):43.
[37] 赵严,郭鸿镇,王涛,谭立军,姚泽坤.等通道转角挤压工艺对TA15合金显微硬度的影响[J].稀有金属材料与工程,2011(05):885-888.
[38] Semenova I P;Raab G I;Saitova L R et al.The effect of equal-channel angular pressing on the structure and mechanical behavior of Ti-6Al-4V alloy[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2004,387:805.
[39] 袁士种,郭鸿镇,赵张龙,王涛,姚泽坤.等通道转角挤压(ECAP)工艺对Ti-1023合金显微硬度的影响[J].航空材料学报,2009(02):25-28.
[40] 刘莹莹,刘长瑞,王雷,张勇召.连续变断面循环挤压工艺参数对TC4钛合金显微组织及硬度的影响[J].稀有金属材料与工程,2014(02):440-444.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%