欢迎登录材料期刊网

材料期刊网

高级检索

在纳米结构的金属及合金中,随着晶粒尺寸的下降,晶界体积分数显著增加,使得晶粒长大的驱动力提高,因此纳米金属在加热时(甚至是室温下)是不稳定的.对Trelewicz/Schuh(TS)模型进行了修正,并利用修正的模型对Cu-Sn纳米晶合金的热力学稳定倾向做了计算研究.利用机械合金化的方法制备不同溶质含量的Cu-Sn纳米晶合金,在不同温度下进行退火实验.实验结果及理论计算表明,随着溶质原子的加入及在晶界的偏聚,Cu-Sn纳米晶合金的晶粒长大得到抑制,热力学稳定性提高.

参考文献

[1] Gleiter H .Nanostructured materials:Basic concepts and microstructure[J].Acta Mater,2000,48:1.
[2] Meyers M A;Mishra A;Benson D J .Mechanical properties of nanocrystalline materials[J].Prog Mater Sci,2006,51:427.
[3] Zhao Y H;Liao X Z;Cheng S et al.Simultaneously increasing the ductility and strength of nanostructured alloys[J].Adv Mater,2006,18:2280.
[4] Ruslan Valiey .Nanomaterial advantage[J].Nature,2002,419:887.
[5] Carsey J E;Ning J;Milligan W W et al.A simple,mixtures-based model for the grain size dependence of strength in nanophase metals[J].Nanostruct Mater,1995,5(04):441.
[6] Atwater M A .Stabilizing nanocrystalline copper and brass by solute addition[D].Raleigh:North Carolina State University,2012.
[7] Atwater M A;Darling K A .A visual library of stability in binary metallic systems:The stabilization of nanocrystalline grain size by solute addition:Part 1[R].ARL-TR-6007.Aberdeen,U.S.Army Research Laboratory,Aberdeen Proving Ground,2012.
[8] Koch, C.C.;Scattergood, R.O.;Saber, M.;Kotan, H. .High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies[J].Journal of Materials Research,2013(13):1785-1791.
[9] Weissmuller J .Alloy effects in nanaostructures[J].Nanostruct Mater,1993,3:261.
[10] Weissmuller J .Alloy thermodynamics in nanostructures[J].J Mater Res Soc,1994,9(01):4.
[11] Jason R. Trelewicz;Christopher A. Schuh .Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys[J].Physical review, B. Condensed matter and materials physics,2009(9):094112:1-094112:13.
[12] Chookajorn T;Murdoch H A;Schuh C A .Supplementary materials for design of stable nanocrystalline alloys[J].Science,2012,337:951.
[13] Saber M;Kotan H;Koch C C et al.Thermodynamic stabilization of nanocrystalline binary alloys[J].J Appl Phys,2013,113:063515.
[14] Friedel J .Electronic structure of primary solid solutions in metals[J].Adv Phys,1954,3:446.
[15] Taiji Nishizawa.Thermodynamics of microstructures[M].US:ASM International,2008
[16] Martienssen W;Warlimont H.Springer handbook of condensed matter and materials data[M].DE:Springer Berlin Heidelberg,2005
[17] Pan Jinsheng;Tong Janmeng;Tian Mingbo.The foundation of material science[M].Beijing:Tsing Hua University Press,1998
[18] Miedema A R;De Boer F R;Boom R .Model predictions for the enthalpy of formation of transition metal alloys[J].Calphad,1977,1(04):341.
[19] Seizo Nagasaki;Makoto Hirabayashi.Binary alloy phasediagrams[M].Jpn:AGNE Gijutsu Center Co.Ltd,2006
[20] Wynblatt P;Ku R C .Surface energy and solute strain energy effects in surface segregation[J].Surf Sci,1977,5:511.
[21] Rajgarhia, R.K.;Saxena, A.;Spearot, D.E.;Hartwig, K.T.;More, K.L.;Kenik, E.A.;Meyer, H. .Microstructural stability of copper with antimony dopants at grain boundaries: Experiments and molecular dynamics simulations[J].Journal of Materials Science,2010(24):6707-6718.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%