欢迎登录材料期刊网

材料期刊网

高级检索

发展清洁可再生能源是人类面临的巨大技术挑战,氢气作为一种理想的清洁能源,其制取及储运技术近年来都取得了很大进展。综述了利用太阳能分解水制氢的基本途径及发展现状,主要包括电解水制氢及人工模拟光合作用制氢、半导体光解水及其催化剂以及最有希望实现的高温热化学循环分解水制氢技术。

Development of a clean and renewable energy source is one of the key technological challenges for mankind.Hydrogen is a potential ideal energy carrier,and great progress has been achieved for hydrogen production and storage in the past decade.Herein,principal methods and development status of hydrogen production from water-splitting by using solar energy are reviewed,whose content covers the artificial leaf system for splitting water via the photosynthetic process,the visible light-absorbing semiconductors and efficient co-catalysts for photocatalytic water splitting,and the most-likely-to-succeed thermochemical water splitting cycles.

参考文献

[1] John Turner;George Sverdrup;Margaret K. Mann;Pin-Ching Maness;Ben Kroposki;Maria Ghirardi;Robert J. Evans;Dan Blake .Renewable hydrogen production[J].International Journal of Energy Research,2008(5):379-407.
[2] Ibrahim Dincer .Environmental and sustainability aspects of hydrogen and fuel cell systems[J].International journal of energy research,2007(1):29-55.
[3] Eberle U;Felderhoff M;Schüth F .Chemical and physical solutions for hydrogen storage[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2009,48:6608.
[4] Dincer I .Green methods for hydrogen production[J].International Journal of Hydrogen Energy,2012,37:1954.
[5] Izquierdo U;Barrio V L;Cambra J F et al.Hydrogen pro-duction from methane and natural gas steam reforming in conventional and microreactor reaction systems[J].International Journal of Hydrogen Energy,2012,37:7026.
[6] ALFREDO URSUA;LUIS M. GANDIA;PABLO SANCHIS .Hydrogen Production From Water Electrolysis: Current Status and Future Trends[J].Proceedings of the IEEE,2012(2):410-426.
[7] Carmo M;Fritz D L;Mergel J et al.A comprehensive re-view on PEM water electrolysis[J].Int J Hydrogen Ener-gy,2013,38:4901.
[8] S. Slade;S.A. Campbell;T.R. Ralph .Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes[J].Journal of the Electrochemical Society,2002(12):A1556-A1564.
[9] Ayers K E;Anderson E B;Capuano C et al.Research ad-vances towards low cost,high efficiency PEM electrolysis[J].ECS Transactions,2010,33:3.
[10] DANIEL G. NOCERA .The Artificial Leaf[J].Accounts of Chemical Research,2012(5):767-776.
[11] Kanan M W;Nocera D G .In situ formation of an oxygen-e-volving catalyst in neutral water containing phosphate and Co2+[J].SCIENCE,2008,321:1072.
[12] Dinca M;Surendranath Y;Nocera D G .A nickel-borate ox-ygen evolving catalyst that functions under benign conditions[J].Proceedings of the National Academy of Sciences(USA),2010,107:10337.
[13] Stachurski J Z O;Pouli D;Ripa J A et al.Low overvoltage hydrogen cathodes[P].US,104235,1982-10-19.
[14] Reece S Y;Hamel J A;Sung K et al.Wireless solar water splitting using silicon-based semiconductors and earth-abun-dant catalysts[J].SCIENCE,2011,334:645.
[15] Osterloh F E;Parkinson B A .Recent developments in solar water-splitting photocatalysis[J].Material Research Society,2011,36:17.
[16] Maeda K;Domen K .Photocatalytic water splitting:Recent progress and future challenges[J].J Phys Chem Lett,2010,1:2655.
[17] Mukherji A;Sun C H;Smith S C et al.Photocatalytic hy-drogen production from water using N-doped Ba5 Ta4 O1 5 un-der solar irradiation[J].J Chem Phys C,2011,115:15674.
[18] Wang D E;Li R G;Zhu J et al.Photocatalytic water oxi-dation on BiVO4 with the electrocatalyst as an oxidation co-catalyst:Essential relations between electrocatalyst and pho-tocatalyst[J].J Phys Chem C,2012,116:5082.
[19] Maeda K;Abe R;Domen K .Role and function of ruthe-nium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light[J].J Phys Chem C,2011,115:3057.
[20] Abe R;Takata T;Sugihara H;Domen K .Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3 (-)/I- shuttle redox mediator[J].Chemical communications,2005(30):3829-3831.
[21] Kudo A;Miseki Y .Heterogeneous photocatalyst materials for water splitting[J].CHEMICAL SOCIETY REVIEWS,2009,38:253.
[22] Surendranath, Y;Dinca, M;Nocera, DG .Electrolyte-Dependent Electrosynthesis and Activity of Cobalt-Based Water Oxidation Catalysts[J].Journal of the American Chemical Society,2009(7):2615-2620.
[23] Maeda K;Teramura K;Lu D et al.Noble-metal/Cr2 O3 core/shell nanoparticles as a Co-catalyst for photocatalytic o-verall water splitting[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2006,45:7806.
[24] Sakamoto N;Ohtsuka H;Ikeda T et al.Highly dispersed noble-metal/chromia(core/shell)nanoparticles as efficient hydrogen evolution promoters for photocatalytic overall wa-ter splitting under visible light[J].Nanoscale,2009,1:106.
[25] Kato H;Hori M;Konta R;Shimodaira Y;Kudo A .Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H-2 and O-2 under visible light irradiation[J].Chemistry Letters,2004(10):1348-1349.
[26] Cesar I;Kay A;Martinez J A G et al.Translucent thin film Fe2 O3 photoanodes for efficient water splitting by sun-light:Nanostructure-directing effect of Si-doping[J].Journal of the American Chemical Society,2006,128:4582.
[27] Zhong D K;Sun J W;Inumaru H et al.Solar water oxida-tion by composite catalyst/ɑ-Fe2 O3 photoanodes[J].Journal of the American Chemical Society,2009,131:6086.
[28] Kodama T;Gokon N .Thermochemical cycles for high-tem-perature solar hydrogen production[J].CHEMICAL REVIEWS,2007,107:4048.
[29] Nakamura T .Hydrogen production from water utilizing so-lar heat at high temperatures[J].SOLAR ENERGY,1977,19(5):467.
[30] Perret R .Solar thermochemical hydrogen production re-search project:Thermochemical cycle selection and invest-ment priority[R].Sandia National Laboratories,2011.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%