欢迎登录材料期刊网

材料期刊网

高级检索

以多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)为主要添加相,协同超导乙炔炭黑(SP),对锰酸锂进行电化学改性.对MWCNTs进行预处理,采用扫描电子显微镜观察MWCNTs的微观形貌.掺杂不同质量比的导电剂,制成电池并以恒流充放电方法测试其电化学性能.结果表明,碳包覆后电池的初始充放电比容量都有所下降,掺入1%(质量分数,下同)MWCNTs后的LiMn2O4的首次充放电效率为96.51%,不可逆容量最小,初始放电比容量为116.42 mAh/g,经20次循环后容量保持率仍达962%,使用复合碳源掺杂时,当m(MWCNTs)∶m(SP)=1:2时,首次充放电效率达96.67%,不可逆容量最小,初始放电比容量为119.37 mAh/g,且掺杂2%MWCNTs的效果要略好于掺入2% SP.

参考文献

[1] Liangbing Hu;Jang Wook Choi;Yuan Yang;Sangmoo Jeong;Fabio La Mantia;Li-Feng Cui;Yi Cui .Highly conductive paper for energy-storage devices[J].Proceedings of the National Academy of Sciences of the United States of America,2009(51):21490-21494.
[2] Tetsuo Shimizua et al.Electric transport measurement of a multi-walled carbon nanotube in scanning transmission electron microscope[J].PHYSICA E,2004,24:37.
[3] Sheng Leimei;Jin Aijin;Yu Liming et al.A simple and universal method for fabricating linear carbon chains in multiwalled carbon nanotubes[J].Materials Letters,2012,81:222.
[4] Armstrong A R;Bruce P G .Synthesis of layered LiMnO2 as all electrode for rechargeable lithium batteries[J].NATURE,1996,381:499.
[5] Shinkea K;Andoa K;Koyamab T et al.Properties of various carbon nanomaterial surfaces in bilirubin adsorption[J].Colloids Surf B:Biointerfaces,2010,77:18.
[6] Dahn J R et al.Mechanisms for lithium insertion in carbonaceous materials[J].SCIENCE,1995,270(5236):590.
[7] Passerini S;Coustier F;Owens B B .Lithium-ion batteries for hearing aid applications pulse discharge and safety tests[J].Journal of Power Sources,2000,90(02):144.
[8] Xia Y Y;Sakai T;Fujieda T et al.Correlating capacity fading and structural changes in Li1+yMn2-yO4-δ spinel cathode materials[J].Journal of the Electrochemical Society,2001,148(09):723.
[9] Han Y S;Kim H G .Synthesis of LiMn2O4 by modified Pechini method and characterization as a cathode for rechargeable Li/LiMn2O4 cells[J].Journal of Power Sources,2000,88(02):161.
[10] Deng B H;Nakamura H;Yoshio M .Comparison and improvement of high rate performance of types of LiMn2O4 spinels[J].Journal of Power Sources,2005,141(01):116.
[11] Huafeng Wang;Zhenhua Li;Kaushik Ghosh .Synthesis of double-walled carbon nanotube films and their field emission properties[J].Carbon: An International Journal Sponsored by the American Carbon Society,2010(10):2882-2889.
[12] Tarascon J M et al.Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4[J].Journal of the Electrochemical Society,1994,141:1421.
[13] 胡晓宏.LiMn2O4正极在高温下性能衰退现象的研究[J].电化学,1999(02):224.
[14] 陈彦彬,刘庆国.锂离子蓄电池正极材料LiMn2O4高温容量衰减解析[J].电源技术,2002(01):5-8.
[15] Vidu R;Stroeve P .Improvement of the thermal stability of Li-ion batteries by polymer coating of LiMn2O4[J].Industrial and Engineering Chemistry Research,2004,43:3314.
[16] Ouinlan F T;Sano K;Willey T et al.Surface characterization of the spinel LixMn2O4 cathode before and after storage at elevated temperatures[J].CHEMISTRY OF MATERIALS,2001,13:4207.
[17] Liu Z;Yu A;Lee J Y .Cycle life improvement of LiMn2O4 cathode in rechargeable lithium batteries[J].Journal of Power Sources,1998,74(02):228.
[18] Pasquier A D;Blyr A et al.Machanism for limited 55 ℃storage performance of Li1.05 Mn1.95O4 electrodes[J].Journal of the Electrochemical Society,1999,146(02):428.
[19] 唐致远,李建刚,薛建军.锂电池正极材料LiMn2O4的改性与循环寿命[J].化学通报(印刷版),2000(08):10-14.
[20] Pascuier D A;Orsini F;Gozdz A S .Electrochemical behavior of LiMn2O4-PPy composite cathodes in the 4 V region[J].Journal of Power Sources,1999,81-82:607.
[21] Cho J et al.Improvement of structural stability of LiMn2O4 cathode material on 55 ℃ cycling by sol-gel coating of LiCoO2[J].Electrochemical and Solid State Letters,1999,2:607.
[22] Amatucci G G;Pascuier A D;Blyr A .The elevated temperature performance of the LiMn2O4/C system:Failure and solutions[J].J Electrochimica Acta,1999,45:255.
[23] 金超,吕东生,李伟善.尖晶石LiMn2O4的表面修饰改性[J].中国锰业,2003(03):21-25.
[24] Jang D H;Shin Y J;Oh S M .Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells[J].Journal of the Electrochemical Society,1999,146:2204.
[25] Wolfenstine J et al.Sn-carbon composites for lithium-ion battery anode[J].Journal of Power Sources,2000,87:1.
[26] Lijima S .Helical microtubules of graphitic carbon[J].NATURE,1991,345(6348):56.
[27] Riichiro Saito;Gene Dresslhaus;Dresslhaus M S.Physical properties of carbon nanotubes[M].London:Imperial Col lege Press,1999
[28] Ajayan P M et al.Nanotubes in a flash ignition and reconstruction[J].SCIENCE,2002,296:705.
[29] Pederson M R;Broughton J Q .Nanocapillarity in fullerene tubules[J].Physical Review Letters,1992,69(18):2689.
[30] Frank S;Poncharal P;Wang Z L et al.Carbon nanotube quantum resistors[J].SCIENCE,1998,280:1744.
[31] Odom TW.;Huang JL.;Kim P.;Lieber CM. .Atomic structure and electronic properties of single-walled carbonnanotubes[J].Nature,1998(6662):62-64.
[32] McEuen PL.;Cobden DH.;Yoon YG.;Louie SG.;Bockrath M. .Disorder, pseudospins, and backscattering in carbon nanotubes[J].Physical review letters,1999(24):5098-5101.
[33] Bachtold A.;Plyasunov S.;Forero M.;Anderson EH.;Zettl A. McEuen PL.;Fuhrer MS. .Scanned probe microscopy of electronic transport in carbon nanotubes[J].Physical review letters,2000(26):6082-6085.
[34] Bachtold A et al.Aharonov-Bohm oscillation in carbon nanotubes[J].NATURE,1999,397:673.
[35] Chico L;Crespi V H;Benedict L X et al.Pure carbon nanoscale devices:Nanotube heterojunction[J].Physical Review Letters,1996,76(06):971.
[36] Yao Z G;Postma H W C;Balents L .Carbon nanotube intermolecular junctions[J].NATURE,1999,402:273.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%