锂空气电池因其高理论能量密度引起了广泛关注.评述了锂空气电池正极材料及催化剂研究情况,分析了正极材料的结构、组成及催化活性对锂空气电池放电容量、稳定性及循环性能的影响,探讨了固体催化剂与可溶性催化剂在降低充电过电位、提高锂空气电池的稳定性与循环性能方面的作用,阐述了正极对锂空气电池性能的重要性及研究所面临的挑战.
参考文献
[1] | Wagner F T;Lakshmanan B;Mathias M F .Electrochemistry and the future the automobile[J].J Phys Chem Lett,2010,1:2204. |
[2] | Armand M;Tarascon J M .Building better batteries[J].NATURE,2008,451:652. |
[3] | Ikeda H;Furukawa N;Ide M .Metal-air batteries[J].Abstracts Papers Am Chem Soc,1979,4:69. |
[4] | Girishkumar G;McCloskey B;Luntz A C et al.Lithiumair battery:Promise and challenges[J].J Phys Chem Lett,2010,1:2139. |
[5] | Bruce P G;Freunberger S A;Hardwick L J et al.Li-O2 and Li-S batteries with high energy storage[J].NATURE MATERIALS,2012,11:19. |
[6] | Abraham KM.;Jiang Z. .A POLYMER ELECTROLYTE-BASED RECHARGEABLE LITHIUM/OXYGEN BATTERY[J].Journal of the Electrochemical Society,1996(1):1-5. |
[7] | Xu K .Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J].CHEMICAL REVIEWS,2004,101:4303. |
[8] | Read J .Characterization of the lithium/oxygen organic electrolyte battery[J].Journal of the Electrochemical Society,2002,149:A1190. |
[9] | Zheng JP;Liang RY;Hendrickson M;Plichta EJ .Theoretical energy density of Li-air batteries[J].Journal of the Electrochemical Society,2008(6):A432-A437. |
[10] | Littauer E L;Tsai K C .Anodic behavior of lithium in aqueous electrolytes[J].Journal of the Electrochemical Society,1976,123:771. |
[11] | Shao Y Y;Ding F;Xiao J et al.Making Li-air batteries rechargeable:Material challenges[J].Advanced Functional Materials,2013,23:987. |
[12] | Visco S J;Katz B D;Nimon Y S et al.Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture[P].US 7282295,2007-10-16. |
[13] | Wang Y G;Zhou H S .A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy[J].Journal of Power Sources,2010,195:358. |
[14] | He, P.;Wang, Y.;Zhou, H. .A Li-air fuel cell with recycle aqueous electrolyte for improved stability[J].Electrochemistry communications,2010(12):1686-1689. |
[15] | Kumar J;Kumar B .Development of membranes and a study of their interfaces for rechargeable lithium-air battery[J].Journal of Power Sources,2009,194:1113. |
[16] | Yang X H;He P;Xia Y Y .Preparation of mesocellular carbon foam and its application for lithium/oxygen battery[J].ELECTROCHEMISTRY COMMUNICATIONS,2009,11:1127. |
[17] | Mirzaeian M;Hall P J .Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries[J].Electrochimica Acta,2009,54:7444. |
[18] | Kichambare P;Kumar J;Rodrigues S et al.Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries[J].Journal of Power Sources,2011,196:3310. |
[19] | Read J;Mutolo K;Ervin M et al.Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery[J].Journal of the Electrochemical Society,2003,150:A1351. |
[20] | Zhang S S;Foster D;Read J .Discharge characteristic of a non-aqueous electrolyte Li/O2 battery[J].Journal of Power Sources,2010,195:1235. |
[21] | Xiao J;Wang D H;Xu W et al.Optimization of air electrode for Li/air batteries[J].Journal of the Electrochemical Society,2010,157:A487. |
[22] | Xu, W;Xiao, J;Wang, DY;Zhang, JA;Zhang, JG .Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries[J].Electrochemical and solid-state letters,2010(4):A48-A51. |
[23] | Park J B;Lee J W;Yoon C S et al.Ordered mesoporous carbon electrodes for Li-O2batteries[J].ACS Appl Mater Interfaces,2013,5:13426. |
[24] | Li, Y.;Wang, J.;Li, X.;Liu, J.;Geng, D.;Yang, J.;Li, R.;Sun, X. .Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries[J].Electrochemistry communications,2011(7):668-672. |
[25] | Mitchell R R;Gallant B M;Thompson C V et al.All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J].Energy Environ Sci,2011,4:2952. |
[26] | Sun B;Wang B;Su D et al.Graphene nanosheets as cathode catalysts for lithium-airbatteries with an enhanced electrochemical performance[J].CARBON,2012,50:727. |
[27] | Ding N;Chien S W;Andy Hor T S et al.Influence of carbon pore size on the discharge capacity of Li-O2 batteries[J].J Mater Chem A,2014,2:12433. |
[28] | Nakanishi S;Mizuno F;Nobuhara K et al.Influence of the carbon surface on cathode deposits in non-aqueous LiO2 batteries[J].CARBON,2012,50:4794. |
[29] | Li Y L;Li X F;Geng D S et al.Carbon black cathodes for lithium oxygen batteries:Influence of porosity and heteroa-tom-doping[J].CARBON,2013,64:170. |
[30] | Park C K;Park S B;Lee S Y et al.Electrochemical performance of lithium air cell with carbon materials[J].Bulletin of the Korean Chemical Society,2010,31:3221. |
[31] | Guo Z Y;Zhou D D;Dong X L et al.Ordered hierarchical mesoporous/macroporous carbon:A high-performance catalyst for rechargeable Li-O2 batteries[J].Advanced Materials,2013,25:5668. |
[32] | Li J;Zhang H M;Zhang Y N et al.A hierarchical porous electrode using a micron-sized honey comb-like carbon material for high capacity lithium-oxygen batteries[J].Nano scale,2013,5:4647. |
[33] | Li J;Zhang Y N;Zhou W et al.A hierarchically honeycomb-like carbon via one-step surface and pore adjustment with superior capacity for lithium-oxygen batteries[J].Journal of Power Sources,2014,262:29. |
[34] | Shui J L;Du F;Xue C M et al.Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries[J].ACS Nano,2014,8:3015. |
[35] | Luo Z H;Zhu L H;Zhang H Y et al.Polyaniline uniformly coated on graphene oxide sheets as supercapacitor material with improved capacitive properties[J].Materials Chemistry and Physics,2013,139:572. |
[36] | Luo Z H;Zhu L H;Huang Y F et al.Effects of graphene reduction degree on capacitive performance of graphene/PA NI composites[J].Synthetic Metals,2013,175:88. |
[37] | Yoo E J;Zhou H S .Hybrid electrolyte Li-air rechargeable batteries based on nitrogen-and phosphorus-doped graphene nanosheets[J].RSC Adv,2014,4:13119. |
[38] | Yoo E J;Nakamura J J;Zhou H S .N-Doped graphene nanosheets for Li-air fuel cells under acidic conditions[J].Energy Environ Sci,2012,5:6928. |
[39] | Xiao, J.;Mei, D.;Li, X.;Xu, W.;Wang, D.;Graff, G.L.;Bennett, W.D.;Nie, Z.;Saraf, L.V.;Aksay, I.A.;Liu, J.;Zhang, J.-G. .Hierarchically porous graphene as a lithium-air battery electrode[J].Nano letters,2011(11):5071-5078. |
[40] | Kim S Y;Lee H T;Kim K B .Electrochemical properties of graphene flakes as an aircathode material for Li-O2 batteries in an etherbased electrolyte[J].Physical Chemistry Chemical Physics,2013,15:20262. |
[41] | Zhang W Y;Zhu J X;Ang H X et al.Binder-free graphene foams for O2 electrodes of Li-O2 batteries[J].Nanoscale,2013,5:9651. |
[42] | Li Y F;Huang Z P;Huang K .Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers[J].Energy Environ Sci,2013,6:3339. |
[43] | Mi R;Liu H;Wang H et al.Effects of nitrogen-doped carbon nanotubes on thedischarge performance of Li air batteries[J].CARBON,2014,67:744. |
[44] | Wu, G.;MacK, N.H.;Gao, W.;Ma, S.;Zhong, R.;Han, J.;Baldwin, J.K.;Zelenay, P. .Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O_2 battery cathodes[J].ACS nano,2012(11):9764-9776. |
[45] | Li Q;Xu P;Gao W et al.Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries[J].Advanced Materials,2014,26:1378. |
[46] | Ottakam Thotiyl, M.M.;Freunberger, S.A.;Peng, Z.;Bruce, P.G. .The carbon electrode in nonaqueous Li-O_2 cells[J].Journal of the American Chemical Society,2013(1):494-500. |
[47] | Peng Z Q;Freunberger S A;Bruce P G .A reversible and higher-rate Li-O2 battery[J].SCIENCE,2012,337:563. |
[48] | Li, F.;Tang, D.-M.;Chen, Y.;Golberg, D.;Kitaura, H.;Zhang, T.;Yamada, A.;Zhou, H. .Ru/ITO: A carbon-free cathode for nonaqueous Li-O_2 battery[J].Nano letters,2013(10):4702-4707. |
[49] | Li F J;Tang D M;Jian Z L et al.Li-O2 battery based on highly efficient Sh doped tin oxide supported Ru nanoparticles[J].Advanced Materials,2014,26:4659. |
[50] | Xu J J;Xu D;Wang Z L et al.Synthesis of perovskitebased porous La-0.75Sr0.25 MnO3 nanotubes asa highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2013,125:3979. |
[51] | Xu J J;Wang Z L;Xu D et al.3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance[J].Energy Environ Sci,2014,7:2213. |
[52] | Cui Y M;Wen Z Y;Liang X et al.A tubular polypyrrole based air electrode with improved O2 diffusivity for LiO2 batteries[J].Energy Environ Sci,2012,5:7893. |
[53] | Lu Q;Zhao Q;Zhang H M et al.Water dispersed conducting polyaniline nanofibers for high capacity rechargeable lithium-oxygen battery[J].ACS Macro Lett,2013,2:92. |
[54] | Wu D F;Guo Z Y;Yin X B et al.Metal-organic frameworks as cathode materials for Li-O2 batteries[J].Advanced Materials,2014,26:3258. |
[55] | Seriani N .Ab initio thermodynamics of lithium oxides from bulk phases to nanoparticles[J].NANOTECHNOLOGY,2009,20:1. |
[56] | Li J X;Zou M Z;Wu C X et al.An effective integrated design for enhanced cathodes of Ni foam supported Pt/CNTs for Li-O2 batterie[J].ACS Appl Mater Interfaces,2014,6:12479. |
[57] | Nasybulin E;Xu W;Engelhard M H .Stability of polymer binders in Li-O2batteries[J].Journal of Power Sources,2013,243:899. |
[58] | Lu, YC;Gasteiger, HA;Parent, MC;Chiloyan, V;Shao-Horn, Y .The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li-Oxygen Batteries[J].Electrochemical and solid-state letters,2010(6):A69-A72. |
[59] | Sun C W;Li F;Ma Chao et al.Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries[J].J Mater Chem A,2014,2:7188. |
[60] | Jian Z L;Liu P;Li F J et al.Core-shell structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2014,126:452. |
[61] | Yilmaz, E.;Yogi, C.;Yamanaka, K.;Ohta, T.;Byon, H.R. .Promoting formation of noncrystalline Li_2O_2 in the Li-O_2 battery with RuO_2 nanoparticles[J].Nano letters,2013(10):4679-4684. |
[62] | Jung, H.-G.;Jeong, Y.S.;Park, J.-B.;Sun, Y.-K.;Scrosati, B.;Lee, Y.J. .Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries[J].ACS nano,2013(4):3532-3539. |
[63] | Fan W G;Guo X X;Xiao D D et al.Influence of gold nanoparticles anchored to carbon nanotubes on formation and decomposition of Li2O2 in nonaqueous Li-O2 batteries[J].J Phys Chem C,2014,118:7344. |
[64] | Black R;Lee J H;Adams B et al.The role of catalysts and peroxide oxidation in lithium oxygen batteries[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2013,125:410. |
[65] | Chen Y H;Freunberger S A;Peng Z Q et al.Charging a Li-O2 battery using a redox mediator[J].Nat Chem,2013,5:489. |
[66] | Lim H D;Song H;Kim J S et al.Superior rechargeability and efficiency of lithium-oxygen batteries:Hierarchical air electrode architecture combined with a solublecatalyst[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2014,126:4007. |
[67] | Yoon T H;Park Y J .New strategy toward enhanced air electrode for Li-air batteries:Apply a polydopamine coating and dissolved catalyst[J].RSC Adv,2014,4:17434. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%