欢迎登录材料期刊网

材料期刊网

高级检索

镁合金组织对其力学性能影响十分显著,通常未经处理的合金组织中存在的粗大相严重割裂基体,降低力学性能,恶化其切削加工性能,制约高强镁合金的广泛应用.鉴于此,从镁合金的组织细化方面入手,概述了变质处理技术、机械搅拌半固态和定向凝固技术在高强镁合金组织细化及其对力学性能影响方面的研究现状.最后对镁合金组织细化前景进行了展望,对推广镁合金的应用具有一定参考意义.

参考文献

[1] 陈振华.变形镁合金[M].北京:化学工业出版社,2005
[2] DAVID H. StJOHN;MA QIAN;MARK A. EASTON .Grain Refinement of Magnesium Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2005(7):1669-1679.
[3] 刘生发,郭洪河,范晓明,黄尚宇,王仲范.镁及其合金铸造组织的细化[J].材料导报,2003(10):24-26,58.
[4] Z.Yaug,J.P.Li,J.X.Zhang,G.W.Lorimer,J.Robson.REVIEW ON RESEARCH AND DEVELOPMENT OF MAGNESIUM ALLOYS[J].金属学报(英文版),2008(05):313-328.
[5] 李清华 .几种变质剂对镁合金组织和性能的影响[D].上海交通大学,2002.
[6] 王欣欣,袁森,曾书峰,赵晨光.C2C16对AM60合金组织与性能的影响[J].热加工工艺,2008(13):17-20.
[7] 吕亚清,韩辉,刘生发.C2 Cl6对AZ91镁合金显微组织及力学性能的影响[J].特种铸造及有色合金,2006(09):598-600.
[8] 夏鹏举,杨宏伟,侯军才,唐玲.Nd和C2Cl6变质对AZ91合金组织和性能的影响[J].特种铸造及有色合金,2013(10):908-911.
[9] Qinglin Jin;Jeong Pil Eom;Su-Gun Lim et al.Effects of C2Cl6 addition on grain refinement and mechanical properties of AZ31 magnesium alloy[J].METALS AND MATERIALS INTERNATIONAL,2003,9(05):453.
[10] Eiji Yano;Yousuke Tamura;Tetsuichi Motegi;Eiichiro Sato .Effect of carbon powder on grain refinement of an AZ91E magnesium alloy[J].Materials transactions,2003(1):107-110.
[11] 艾庐山 .Ce和Sb对AZ91镁合金铸态及半固态组织的变质作用研究[D].西安理工大学,2006.
[12] 王明星,周宏,王林,李伟,赵宇.Y和Ce对AZ91D镁合金显微组织和力学性能的影响[J].吉林大学学报(工学版),2007(01):6-10.
[13] 刘畅,周宏,孙广平,孙娜.稀土Y、Ce和Si对AZ91镁合金铸态组织的影响[J].铸造技术,2006(05):485-488.
[14] 黄正华,郭学锋,张忠明.Effects of Ce on damping capacity of AZ91D magnesium alloy[J].中国有色金属学会会刊(英文版),2004(02):311-315.
[15] 张大华,陈体军,郝远.Nd对Mg-Zn-Y合金显微组织与力学性能的影响[J].中国铸造装备与技术,2010(01):22-25.
[16] 白雪,王星明,王志刚,储茂友,张碧田,段华英,韩沧,孙静,赵永成.稀土元素Nd对Mg-Zn-Y合金组织结构和力学性能的影响[J].材料导报,2013(14):8-12.
[17] 王亚霄,付俊伟,杨院生.Nd添加对AZ80镁合金显微组织及力学性能的影响[J].中国有色金属学报(英文版),2012(06):1322-1328.
[18] 李德君,任凤章,刘平,赵士阳,田保红,马战红.稀土Nd对AZ31变形镁合金组织与性能的影响[J].中国有色金属学报,2010(10):1876-1882.
[19] 陈君,李全安,张清,付三玲,陈晓亚,陈雷雷.Sm在耐热镁合金中的作用及研究进展[J].材料导报,2014(07):109-111,115.
[20] Li, DQ;Wang, QD;Ding, WJ .Effects of samarium on microstructure and mechanical properties of Mg-Y-Sm-Zr alloys during thermo-mechanical treatments[J].Journal of Materials Science,2009(12):3049-3056.
[21] 赵永成,颜世宏,李宗安,庞思明,陈德宏,成维.稀土元素Sm对Mg-Zn-Y合金组织结构和力学性能的影响[J].稀有金属,2011(05):667-672.
[22] Katsuyoshi KONDOH;Takashi YAMAGUCHI;Tadashi SERIKAWA;Hideki OGINUMA .Surface Modification of Magnesium Alloy by Mg_2Si Coating Technology[J].JSME International Journal, Series A. Solid mechanics and material engineering,2005(4):264-268.
[23] Kazunori Asano;Hiroyuki Yoneda .High Temperature Properties of AZ91D Magnesium Alloy Composite Reinforced with Short Alumina Fiber and Mg_2Si Particle[J].Materials transactions,2008(7):1688-1693.
[24] 陈振华,曹特,周涛.Si对快速凝固/粉末冶金(RS/PM)AZ91镁合金组织和性能的影响[J].湖南大学学报(自然科学版),2010(05):69-73.
[25] Trojanováa Z;G(a)rtnerová V;J(a)gera A et al.Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles[J].Composites Science and Technology,2009,69:2256.
[26] Mayumi Suzuki;Kayo Tsuchida;Kouichi Maruyama .Microalloying Effects of Ca and Ni on High-Temperature Creep Behavior in Mg-Y-Zn Alloys[J].Materials transactions,2008(5):918-923.
[27] Joon Seok Kyeong;Jeong Kyun Kim;Myung Jae Lee .Texture Modification by Addition of Ca in Mg-Zn-Y Alloy[J].Materials transactions,2012(5):991-994.
[28] WANG Feng,WANG Yue,MAO Ping-li,YU Bao-yi,GUO Quan-ying.Effects of combined addition of Y and Ca on microstructure and mechanical properties of die casting AZ91 alloy[J].中国有色金属学报(英文版),2010(z2):311-317.
[29] 张大华,王瑞权.Pb对AZ91镁合金铸态显微组织及力学性能的影响[J].有色金属加工,2009(05):4-6.
[30] Arun Boby;Uma Thanu Subramonia Pillai;Bellambettu Chandrasekhara Pai .Investigation on lead and yttrium addition on the microstructure and mechanical properties of AZ91 aagnesium alloy[J].J Solid Mech Mater Eng,2013,7(02):273.
[31] Srinivasan A;Pillai U T S;Pai B C .Effect of Pb addition on ageing behavior of AZg1 magnesium alloy[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2007,452:87.
[32] Hidetoshi Takagi;Yasuhiro Uetani;Masayoshi Dohi .Effects of Mechanical Stirring and Vibration on the Microstructure of Hypereutectic Al-Si-Cu-Mg Alloy Billets[J].Materials transactions,2007(5):960-966.
[33] 毛卫民,甄子胜,陈洪涛.电磁搅拌对半固态AZ91D镁合金组织的影响[J].材料研究学报,2005(03):303-309.
[34] 杨柳青;康永林;崔建利.机械搅拌法对半固态AZ91D镁合金显微组织的影响[J].特种铸造及有色合金,2007(z1):432.
[35] Kamado S;Yuasa A;Hitomi T et al.Effects of stirring conditions on structure and apparent viscosity of semi-solid AZ91D magnesium alloy[J].Journal of Japan Institute of Light Metals,1992,42(12):734.
[36] 黄国杰,谢水生,程磊,江运喜.搅拌工艺参数对半固态AZ91镁合金晶粒密度的影响[J].稀有金属,2007(05):606-609.
[37] Masato Tsujikawa;Sung Wook Chung;Maho Tanaka .High-Strengthening of Mg-5.5 mass percent Y-4.3 mass percent Zn Cast Alloy by Friction Stir Processing[J].Materials transactions,2005(12):3081-3084.
[38] M. Tsujikawa;S. W. Chung;T. Morishige;L. F. Chiang;Y. Takigawa;S. Oki;K. Higashi .Microstructural Evolution of Friction Stir Processed Cast Mg-5.9 mass%Y-2.6 mass%Zn Alloy in High Temperature Deformation[J].Materials transactions,2007(3):618-621.
[39] 李勇,郑碰菊,张建波,刘耀,杨新涛.定向凝固技术的研究现状及发展趋势[J].材料导报,2014(23):108-112.
[40] Burden M H;Hunt J D .Cellular and dendritic growth[J].Journal of Crystal Growth,1974,22(02):109.
[41] Magnin P;Trivedi R .Eutectic growth.A modification of the Jackson and Hunt theory[J].ACTA METALLURGICA ET MATERIALIA,1991,39(04):453.
[42] 陈孝先,李秋书,范艳艳.定向凝固对AZ31镁合金凝固组织的影响[J].中国铸造装备与技术,2009(02):19-21.
[43] 邹敏强 .定向凝固AZ31镁合金的组织与性能研究[D].湖南大学,2006.
[44] Mamoru Mabuchi;Masaaki Kobata;Yasumasa Chino .Tensile Properties of Directionally Solidified AZ91 Mg Alloy[J].Materials transactions,2003(4):436-439.
[45] Yasumasa Chino;Katsuya Kimura;Mamoru Mabuchi .Direction Dependence of Compressive Properties of Mg Processed by Directional Solidification[J].Materials transactions,2008(3):393-397.
[46] Tae Bum Kim;Shinsuke Suzuki;Hideo Nakajima .Effect of Conditions of Unidirectional Solidification on Microstructure and Pore Morphology of Al-Mg-Si Alloys[J].Materials transactions,2010(3):496-502.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%