欢迎登录材料期刊网

材料期刊网

高级检索

用 RBF 型人工神经网络研究了碳/陶瓷复合材料的化学成分对其硬度的影响。首先设计了 RBF 型神经网络模型,用“舍一法”进行了训练,使模型具有满意的预测性能。随后分析了化学组分对硬度的影响,包括单因素影响和双因素耦合影响。结果表明:材料的两种组分同时变化时,对硬度的影响更加复杂,呈现典型的非线性特征。

RBF artificial neural network was developed to study the effects of chemical compositions on the hardness of carbon/ceramic composite material.The RBF neural network model was designed and trained by the“leave-one-out method”.After being trained,the model had satisfactory prediction performance.Then,the ANN model was used to analyze the effects of chemical compositions on the hardness of carbon/ceramic,including single ones of single factor and coupling ones of dual factors.The results showed that the coupling effects of dual factors on the hardness are more complicated,presenting typical non-linear characteristics.

参考文献

[1] Ogawa Ichitaro;Kobayashi Kazuo;Nishikawa Susumu .Oxi-dation resistance of carbon-ceramics composite materials sin-tered from ground powder mixtures of raw coke and cera-mics[J].Journal of Materials Science,1988,23(4):1363.
[2] 李杰.碳/陶复合材料浅析[J].碳素,1990(04):12-21.
[3] 丁燕鸿 .SiC晶须增韧Ti(C,N)基金属陶瓷复合材料的研究[D].中南大学,2006.
[4] 龙萍,许立坤,李庆芬,唐益,辛永磊.均匀设计RulrSnLa/Ti氧化物涂层的回归与灰色关联分析[J].化学学报,2009(12):1325-1330.
[5] 汤爱涛;胡红军;杨明波.计算机在材料工程中的应用[M].重庆:重庆大学出版社,2008
[6] 曾令可.计算机在材料工程中的应用[M].武汉:武汉理工大学出版社,2008
[7] Hecht-Nielesn R.Neurocomputing[M].Don Mills,Ontario:Addison-Wesley Publishing,1991:59.
[8] 沙全友,范喆,蒋志强,孙建华.人工神经网络在材料性能预测中的应用[J].郑州航空工业管理学院学报(管理科学版),2004(04):43-44.
[9] 徐文峰,廖晓玲,刘希东.人工神经网络在材料性能研究中的应用[J].材料导报,2006(z2):237-240,257.
[10] 博荟璇;赵红.MATLAB 神经网络应用设计[M].北京:机械工业出版社,2010
[11] 由伟,白秉哲,方鸿生.钢的连续冷却转变图的神经网络计算模型及预测软件设计[J].金属热处理,2004(07):17-20.
[12] 徐雪霞,由伟,白秉哲,方鸿生.人工神经网络预测Si对空冷贝氏体钢CCT图的影响[J].材料热处理学报,2009(04):198-202.
[13] 尹海莲 .基于人工神经网络技术的复合材料性能预报[D].哈尔滨:哈尔滨工业大学,2004.
[14] Narayan V;Abad R;Bhadeshia H K D H .Estimation of hot torsion stress strain curves in iron alloys using neural network analysis[J].ISIJ International,1999,39(10):999.
[15] Sung-Sau So et al.Evolutionary optimization in quantitative structure-activity relationship:An application of genetic neural networks[J].J Medicinal Chem,1996,39(7):1524.
[16] Cybenko G.Mathematics of control,signals and systems[M].New York:Springer International Press,1980:303.
[17] Hornik K;Baldi P .Multilayer feedforward and networks are universial approximators[J].NEURAL NETWORKS,1989,2:359.
[18] Chen T P;Chen H;Liu R W .Approximation capability in C(Rn)by multilayer feedforward networks and related prob-lems[J].IEEE Transactions on Neural Networks,1995,6(1):25.
[19] Scarselli F;Tsoi A C .Universal approximation using feed-forward neural network:A survey of some existing me-thods,and some new results[J].NEURAL NETWORKS,1998,11(1):15.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%