欢迎登录材料期刊网

材料期刊网

高级检索

不同结构的TiO2光阳极对量子点敏化太阳能电池(QDSCs)性能有着重要影响,通过构筑不同纳米结构的TiO2光阳极,能够有效提升电池性能.介绍了QDSCs的结构和基本原理,重点综述了不同结构的TiO2光阳极,如零维(0-D)纳米结构、1-D纳米结构、2-D纳米结构及其它复合纳米结构在QDSCs中的应用现状和发展趋势,同时讨论了不同结构TiO2光阳极的优缺点.最后,指出了可能提升QDSCs效率的有效途径.

参考文献

[1] Yingzhuang Ma;Shufeng Wang;Lingling Zheng;Zelin Lu;Danfei Zhang;Zuqiang Bian;Chunhui Huang.Recent Research Developments of Perovskite Solar Cells[J].中国化学(英文版),2014(10):957-963.
[2] Zheng, Q.;Kang, H.;Yun, J.;Lee, J.;Park, J.H.;Baik, S..Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells[J].ACS nano,20116(6):5088-5093.
[3] Zhao, Ke;Pan, Zhenxiao;Mora-Sero, Ivan;Canovas, Enrique;Wang, Hai;Song, Ya;Gong, Xueqing;Wang, Jin;Bonn, Mischa;Bisquert, Juan;Zhong, Xinhua.Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control[J].Journal of the American Chemical Society,201516(16):5602-5609.
[4] Feng, Hao-Lin;Wu, Wu-Qiang;Rao, Hua-Shang;Wan, Quan;Li, Long-Bin;Kuang, Dai-Bin;Su, Cheng-Yong.Three-Dimensional TiO2/ZnO Hybrid Array as a Heterostructured Anode for Efficient Quantum-Dot-Sensitized Solar Cells[J].ACS applied materials & interfaces,20159(9):5199-5205.
[5] Huizhen Yao;Wuyou Fu;Haibin Yang;Jinwen Ma;Meiling Sun;Yanli Chen;Wenjiao Zhang;Di Wu;Pin Lv;Meijing Li.Vertical Growth of Two-Dimensional TiO_2 Nanosheets Array Films and Enhanced Photoelectrochemical Properties Sensitized by CdS Quantum Dots[J].Electrochimica Acta,2014:258-265.
[6] Shengjun Li;Zeng Chen;Tao Li;Huiping Gao;Chaochao Wei;Wei Li;Wenping Kong;Weifeng Zhang.Vertical nanosheet-structured ZnO/TiO_2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells[J].Electrochimica Acta,2014:362-368.
[7] Zhou, Ru;Zhang, Qifeng;Uchaker, Evan;Yang, Lin;Yin, Naiqiang;Chen, Yonghu;Yin, Min;Cao, Guozhong.Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells[J].Electrochimica Acta,2014:284-292.
[8] Zhou, N.;Chen, G.;Zhang, X.;Cheng, L.;Luo, Y.;Li, D.;Meng, Q..Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution[J].Electrochemistry communications,2012:97-100.
[9] Salunkhe, Dipak B.;Dubal, Deepak P.;Sali, Jaydeep V.;Sankapal, Babasaheb R..Room temperature linker free growth of CdSe quantum dots on mesoporous TiO2: solar cell application[J].CERAMICS INTERNATIONAL,20153 Pt.A(3 Pt.A):3940-3946.
[10] Xiaohui Song;Minqiang Wang;Hao Zhang;Jianping Deng;Zhi Yang;Chenxin Ran;Xi Yao.Morphologically controlled electrodeposition of CdSe on mesoporous TiO_2 film for quantum dot-sensitized solar cells[J].Electrochimica Acta,2013:449-457.
[11] Lee, H;Wang, MK;Chen, P;Gamelin, DR;Zakeeruddin, SM;Gratzel, M;Nazeeruddin, MK.Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process[J].Nano letters,200912(12):4221-4227.
[12] Li, Wenjie;Pan, Zhenxiao;Zhong, Xinhua.CuInSe2 and CuInSe2-ZnS based high efficiency "green" quantum dot sensitized solar cells[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,20154(4):1649-1655.
[13] Jiao, Shuang;Shen, Qing;Mora-Sero, Ivan;Wang, Jin;Pan, Zhenxiao;Zhao, Ke;Kuga, Yuki;Zhong, Xinhua;Bisquert, Juan.Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells[J].ACS nano,20151(1):908-915.
[14] Peng, Zhuoyin;Liu, Yueli;Zhao, Yinghan;Chen, Keqiang;Cheng, Yuqing;Chen, Wen.Incorporation of the TiO2 nanowire arrays photoanode and Cu2S nanorod arrays counter electrode on the photovoltaic performance of quantum dot sensitized solar cells[J].Electrochimica Acta,2014:276-283.
[15] Zhen Li;Libo Yu;Yingbo Liu;Shuqing Sun.CdS/CdSe Quantum dots Co-sensitized TiO_2 Nanowire/Nanotube Solar Cells with Enhanced Efficiency[J].Electrochimica Acta,2014:379-388.
[16] Shuanglong Feng;Junyou Yang;Ming Liu;Hu Zhu;Jiansheng Zhang;Gen Li;Jiangying Peng;Qiongzhen Liu.CdS quantum dots sensitized TiO_2 nanorod-array-film photoelectrode on FTO substrate by electrochemical atomic layer epitaxy method[J].Electrochimica Acta,2012:321-326.
[17] Chang Chen;Meidan Ye;Miaoqiang Lv;Cheng Gong;Wenxi Guo;Changjian Lin.Ultralong Rutile TiO_2 Nanorod Arrays with Large Surface Area for CdS/CdSe Quantum Dot-sensitized Solar Cells[J].Electrochimica Acta,2014:175-182.
[18] Wang, J.;Zhang, T.;Wang, D.;Pan, R.;Wang, Q.;Xia, H..Influence of CdSe quantum dot interlayer on the performance of polymer/TiO _2 nanorod arrays hybrid solar cell[J].Chemical Physics Letters,2012:105-109.
[19] Li, Zhen;Yu, Libo;Liu, Yingbo;Sun, Shuqing.Efficient quantum dot-sensitized solar cell based on CdSxSe1-x/Mn-CdS/TiO2 nanotube array electrode[J].Electrochimica Acta,2015:200-209.
[20] Pengtao Sheng;Weili Li;Jin Cai.A novel method for the preparation of a photocorrosion stable core/shell CdTe/CdS quantum dot TiO2 nanotube array photoelectrode demonstrating an AM 1.5G photoconversion efficiency of 6.12%[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201326(26):7806-7815.
[21] Yuekun Lai;Zequan Lin;Dajiang Zheng;Lifeng Chi;Ronggui Du;Changjian Lin.CdSe/CdS quantum dots co-sensitized TiO_2 nanotube array photoelectrode for highly efficient solar cells[J].Electrochimica Acta,2012:175-181.
[22] Badawi, Ali;Al-Hosiny, N.;Abdallah, S..The photovoltaic performance of CdS quantum dots sensitized solar cell using graphene/TiO2 working electrode[J].Superlattices and microstructures,2015:88-96.
[23] Lei Chen;Luo Tuo;Jun Rao;Xingfu Zhou.TiO_2 doped with different ratios of graphene and optimized application in CdS/CdSe quantum dot-sensitized solar cells[J].Materials Letters,2014Jun.1(Jun.1):161-164.
[24] Keyou Yan;Wei Chen;Shihe Yang.Significantly Enhanced Open Circuit Voltage and Fill Factor of Quantum Dot Sensitized Solar Cells by Linker Seeding Chemical Bath Deposition[J].The journal of physical chemistry, C. Nanomaterials and interfaces,20131(1):92-99.
[25] Zhenxiao Pan;Hua Zhang;Kan Cheng;Yumei Hou;Jianli Hua;Xinhua Zhong.Highly Efficient Inverted Type-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells[J].ACS nano,20125(5):3982-3991.
[26] Xiao-Yun Yu;Bing-Xin Lei;Dai-Bin Kuang.Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition[J].Chemical science,20117(7):1396-1400.
[27] Bingkun Liu;Dejun Wang;Lingling Wang;Yanjun Sun;Yanhong Lin;Xueqiang Zhang;Tengfeng Xie.Glutathione-assisted hydrothermal synthesis of CdS-decorated TiO_2 nanorod arrays for quantum dot-sensitized solar cells[J].Electrochimica Acta,2013:661-667.
[28] Wu, Kaifeng;Li, Qiuyang;Jia, Yanyan;McBride, James R.;Xie, Zhao-xiong;Lian, Tianquan.Efficient and Ultrafast Formation of Long-Lived Charge-Transfer Exciton State in Atomically Thin Cadmium Selenide/Cadmium Telluride Type-II Heteronanosheets[J].ACS nano,20151(1):961-968.
[29] Ip, A.H.;Thon, S.M.;Hoogland, S.;Voznyy, O.;Zhitomirsky, D.;Debnath, R.;Levina, L.;Rollny, L.R.;Carey, G.H.;Fischer, A.;Kemp, K.W.;Kramer, I.J.;Ning, Z.;Labelle, A.J.;Chou, K.W.;Amassian, A.;Sargent, E.H..Hybrid passivated colloidal quantum dot solids[J].Nature nanotechnology,20129(9):577-582.
[30] Jiang Tang;Kyle W. Kemp;Sjoerd Hoogland.Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J].Nature materials,201110(10):765-771.
[31] Sargent, E.H..Colloidal quantum dot solar cells[J].Nature photonics,20123(3):133-135.
[32] Blas-Ferrando, Vicente M.;Ortiz, Javier;Gonzalez-Pedro, Victoria;Sanchez, Rafael S.;Mora-Sero, Ivan;Fernandez-Lazaro, Fernando;Sastre-Santos, Angela.Synergistic Interaction of Dyes and Semiconductor Quantum Dots for Advanced Cascade Cosensitized Solar Cells[J].Advanced functional materials,201521(21):3220-3226.
[33] Alexander H. Ip;Andre J. Labelle;Edward H. Sargent.Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier[J].Applied physics letters,201326(26):263905-1-263905-3.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%