基于Ⅳ-Ⅵ族化合物的胶体量子点具有易于合成、带隙可调等优点,被认为是一种非常有前途的窄带隙光伏材料。近年来,利用Ⅳ-Ⅵ族化合物制作的胶体量子点太阳电池最高转换效率已经突破10%。介绍了胶体量子点的合成方法、基本结构及其光电特性;着重分析了国内外关于肖特基和异质结胶体量子点太阳电池的研究现状,指出了目前该领域研究中存在的问题和发展趋势,并分析了未来需要重点解决的关键问题。
Colloidal quantum dots prepared by Ⅳ-Ⅵ compounds were considered to be very promising narrow band gap photo-voltaic materials thanks to their simple synthesis methods and adj ustable band gap.In recent years,the highest conversion efficiency of colloidal quantum dot solar cells prepared by Ⅳ-Ⅵ compounds has exceeded 10%.This paper introduces synthesis methods,basic structure and the optical and electrical properties of Ⅳ-Ⅵ compounds,analyzes the current research status of Schottky and hetero-j unction colloidal quantum dot solar cells,points out the existing problems and the development trend,and proposes key problem to be solved in the future.
参考文献
[1] | Clemens Burda;Xiaobo Chen;Radha Narayanan;Mostafa A.EI-Sayed.Chemistry and Properties of Nanocrystals of Different Shapes[J].Chemical Reviews,20054(4):1025-1102. |
[2] | William W.Yu;Joshua C.Falkner;Bertram S.Shih;Vicki L.Colvin.Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent[J].Chemistry of Materials,200417(17):3318-3322. |
[3] | Margaret A. Hines;Gregory D. Scholes.Colloidal PbS nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution[J].Advanced Materials,200321(21):1844-1849. |
[4] | Moreels, I.;Justo, Y.;De Geyter, B.;Haustraete, K.;Martins, J.C.;Hens, Z..Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study[J].ACS nano,20113(3):2004-2012. |
[5] | Ethan J. D. Klem;Dean D. MacNeil;Paul W. Cyr;Larissa Levina;Edward H. Sargent.Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution[J].Applied physics letters,200718(18):183113-1-183113-3-0. |
[6] | Li QW;Sun BQ;Kinloch IA;Zhi D;Sirringhaus H;Windle AH.Enhanced self-assembly, of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes[J].Chemistry of Materials: A Publication of the American Chemistry Society,20061(1):164-168. |
[7] | Irina Lokteva;Nikolay Radychev;Florian Witt.Surface Treatment of CdSe Nanoparticles for Application in Hybrid Solar Cells: The Effect of Multiple Ligand Exchange with Pyridine[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201029(29):12784-12791. |
[8] | Jiang Tang;Kyle W. Kemp;Sjoerd Hoogland.Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J].Nature materials,201110(10):765-771. |
[9] | Zhijun Ning;Yuan Ren;Sjoerd Hoogland;Oleksandr Voznyy;Larissa Levina;Philipp Stadler;Xinzheng Lan;David Zhitomirsky;Edward H. Sargent.All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation[J].Advanced Materials,201247(47):6295-6299. |
[10] | Dmitry N. Dirin;Se?bastien Dreyfuss;Maryna I. Bodnarchuk;Georgian Nedelcu;Paris Papagiorgis;Grigorios Itskos;Maksym V. Kovalenko.Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals[J].Journal of the American Chemical Society,201418(18):6550-6553. |
[11] | Hao Zhang;Jaeyoung Jang;Wenyong Liu;Dmitri V. Talapin.Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands[J].ACS nano,20147(7):7359-7369. |
[12] | MICHELLE D. REGULACIO;MING-YONG HAN.Composition-Tunable Alloyed Semiconductor Nanocrystals[J].Accounts of Chemical Research,20105(5):621-630. |
[13] | Raffaella Buonsanti;Delia J. Milliron.Chemistry of Doped Colloidal Nanocrystals[J].Chemistry of Materials: A Publication of the American Chemistry Society,20138(8):1305-1317. |
[14] | Xing Shu;Ziming Zhou;Heng Wang.Efficient quantum dot-sensitized solar cell with tunable energy band CdSe_xS_(1-x) quantum dots[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,201221(21):10525-10529. |
[15] | Pan, Z.;Zhao, K.;Wang, J.;Zhang, H.;Feng, Y.;Zhong, X..Near infrared absorption of CdSe_xTe_(1-x)alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability[J].ACS nano,20136(6):5215-5222. |
[16] | Zvicka Deutsch;Assaf Avidan;Iddo Pinkas.Energetics and dynamics of exciton-exciton interactions in compound colloidal semiconductor quantum dots[J].Physical chemistry chemical physics: PCCP,20118(8):3210-3219. |
[17] | Peter Reiss;Myriam Protière;Liang Li.Core/Shell Semiconductor Nanocrystals[J].Small,20092(2):154-168. |
[18] | Yolanda Justo;Pieter Geiregat;Karen Van Hoecke.Optical Properties of PbS/CdS Core/Shell Quantum Dots[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201339(39):20171-20177. |
[19] | H. Zhao;Z. Fan;H. Liang.Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films[J].Nanoscale,201412(12):7004-7011. |
[20] | Darren C. J. Neo;Cheng Cheng;Samuel D. Stranks.Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells[J].Chemistry of Materials: A Publication of the American Chemistry Society,201413(13):4004-4013. |
[21] | M. S. Neo;N. Venkatram;G. S. Li.Synthesis of PbS/CdS Core-Shell QDs and their Nonlinear Optical Properties[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201042(42):18037-18044. |
[22] | Tzung-Luen Li;Yuh-Lang Lee;Hsisheng Teng.High-performance quantum dot-sensitized solar cells based on sensitization with CuInS_2 quantum dots/CdS heterostructure[J].Energy & environmental science: EES,20121(1):5315-5324. |
[23] | Luo, J.;Wei, H.;Huang, Q.;Hu, X.;Zhao, H.;Yu, R.;Li, D.;Luo, Y.;Meng, Q..Highly efficient core-shell CuInS_2-Mn doped CdS quantum dot sensitized solar cells[J].Chemical communications,201337(37):3881-3883. |
[24] | Sergei A.Ivanov;Andrei Piryatinski;Jagjit Nanda.Type-II Core/Shell CdS/ZnSe Nanocrystals:Synthesis,Electronic Structures,and Spectroscopic Properties[J].Journal of the American Chemical Society,200738(38):11708-11719. |
[25] | Ip, A.H.;Thon, S.M.;Hoogland, S.;Voznyy, O.;Zhitomirsky, D.;Debnath, R.;Levina, L.;Rollny, L.R.;Carey, G.H.;Fischer, A.;Kemp, K.W.;Kramer, I.J.;Ning, Z.;Labelle, A.J.;Chou, K.W.;Amassian, A.;Sargent, E.H..Hybrid passivated colloidal quantum dot solids[J].Nature nanotechnology,20129(9):577-582. |
[26] | Zhijun Ning;Oleksandr Voznyy;Jun Pan.Air-stable n-type colloidal quantum dot solids[J].Nature materials,20148(8):822-828. |
[27] | Carey, Graham H.;Levina, Larissa;Comin, Riccardo;Voznyy, Oleksandr;Sargent, Edward H..Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation[J].Advanced Materials,201521(21):3325-3330. |
[28] | Keith W. Johnston;Andras G. Pattantyus-Abraham;Jason P. Clifford;Stefan H. Myrskog;Dean D. MacNeil;Larissa Levina;Edward H. Sargent.Schottky-quantum dot photovoltaics for efficient infrared power conversion[J].Applied physics letters,200815(15):151115-1-151115-3-0. |
[29] | Pattantyus-Abraham, A.G.;Kramer, I.J.;Barkhouse, A.R.;Wang, X.;Konstantatos, G.;Debnath, R.;Levina, L.;Raabe, I.;Nazeeruddin, M.K.;Gr?tzel, M.;Sargent, E.H..Depleted-heterojunction colloidal quantum dot solar cells[J].ACS nano,20106(6):3374-3380. |
[30] | Yuh-Lang Lee;Bau-Ming Huang;Huei-Ting Chien.Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications[J].Chemistry of Materials: A Publication of the American Chemistry Society,200822(22):6903-6905. |
[31] | Luther JM;Law M;Beard MC;Song Q;Reese MO;Ellingson RJ;Nozik AJ.Schottky Solar Cells Based on Colloidal Nanocrystal Films[J].Nano letters,200810(10):3488-3492. |
[32] | Ma, W;Luther, JM;Zheng, HM;Wu, Y;Alivisatos, AP.Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals[J].Nano letters,20094(4):1699-1703. |
[33] | Debnath, R.;Tang, J.;Barkhouse, D.A.;Wang, X.;Pattantyus-Abraham, A.G.;Brzozowski, L.;Levina, L.;Sargent, E.H..Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles[J].Journal of the American Chemical Society,201017(17):5952-5953. |
[34] | Liu, Y.;Gibbs, M.;Puthussery, J.;Gaik, S.;Ihly, R.;Hillhouse, H.W.;Law, M..Dependence of carrier mobility on nanocrystal size and ligand length in pbse nanocrystal solids[J].Nano letters,20105(5):1960-1969. |
[35] | Tong Ju;Rebekah L. Graham;Guangmei Zhai;Yvonne W. Rodriguez;Alison J. Breeze;Lily Yang;Glenn B. Alers;Sue A. Carter.High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature[J].Applied physics letters,20104(4):043106-1-043106-3. |
[36] | Chia-Hao M. Chuang;Patrick R. Brown;Vladimir Bulovic.Improved performance and stability in quantum dot solar cells through band alignment engineering[J].Nature materials,20148(8):796-801. |
[37] | Octavi E. Semonin;Joseph M. Luther;Sukgeun Choi;Hsiang-Yu Chen;Jianbo Gao;Arthur J. Nozik;Matthew C. Beard.Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell[J].Science,2011Dec.16 TN.6062(Dec.16 TN.6062):1530-1533. |
[38] | Yuan, Mingjian;Voznyy, Oleksandr;Zhitomirsky, David;Kanjanaboos, Pongsakorn;Sargent, Edward H..Synergistic Doping of Fullerene Electron Transport Layer and Colloidal Quantum Dot Solids Enhances Solar Cell Performance[J].Advanced Materials,20155(5):917-921. |
[39] | Wang, X.;Koleilat, G.I.;Tang, J.;Liu, H.;Kramer, I.J.;Debnath, R.;Brzozowski, L.;Barkhouse, D.A.R.;Levina, L.;Hoogland, S.;Sargent, E.H..Tandem colloidal quantum dot solar cells employing a graded recombination layer[J].Nature photonics,20118(8):480-484. |
[40] | Nozik, A.J.;Beard, M.C.;Luther, J.M.;Law, M.;Ellingson, R.J.;Johnson, J.C..Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J].Chemical Reviews,201011(11):6873-6890. |
[41] | Anshu Pandey;Philippe Guyot;Sionnest.Slow Electron Cooling In Colloidal Quantum Dots[J].Science,20085903(5903):929-932. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%