欢迎登录材料期刊网

材料期刊网

高级检索

高功率、高容量的 LiNi0.8 Co0.15 Al0.05 O2(NCA)正极锂离子电池在电动汽车和定置储能电池等行业中具有非常广阔的应用前景。为使其更具商业竞争力,NCA锂电池的使用寿命至少需要延长至15年,这对现行技术而言是一个很大的挑战。因此,明确 NCA锂电池在循环和储存过程中性能衰减机理是延长 NCA动力电池使用寿命的关键。大量研究表明正极表面膜的形成、表面盐岩结构类 NiO相的出现、显微裂纹的产生、表面导电碳基体的恶化等因素是 NCA动力电池衰减的主要原因。通过常规原子掺杂、表面包覆等方法在一定程度上能有效抑制正极材料的恶化,延长锂离子电池的使用寿命。

LiNi0.8 Co0.15 Al0.05 O2 lithium ion batteries have extremely broad application prospect in electric vehicles and statio-nary storage batteries due to its high capacity and high power.To be more economically attractive,it requires the batteries to have a long life during both storage and operation,typically more than 1 5 years.However,it still remains a challenge to achieve this goal, that is to say the short service life of LIB is a technological bottleneck for its application in electronic vehicles.Therefore,investiga-ting the degradation mechanism of lithium-ion cell plays an important role in the achievement of long life for lithium-ion cell.Exten-sive research has shown that the formation of surface film,appearance of a NiO-like resistance layer with Fm3m rock structure,the micro-crack generation and deterioration of conductive carbon matrix are considered to be the dominant factors for the degradation of capacity and power.The deterioration of the cathode can be suppressed to a certain degree by the conventional modification methods, such as atomic doping,surface coating.

参考文献

[1] C.H.Chen;J.Liu;K.Amine.Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries[J].Journal of Power Sources,20012(2):321-328.
[2] D.Ostrovskii;F.Ronci;B.Scrosati.A FTIR and Raman study of spontaneous reactions occurring at the LiNi_yCo(1-y)O_2 electrode/non-aqueous electrolyte interface[J].Journal of Power Sources,20012(2):183-188.
[3] Yoshiyasu Saito;Masahiro Shikano;Hironori Kobayashi.State of charge (SOC) dependence of lithium carbonate on LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 electrode for lithium-ion batteries[J].JOURNAL OF POWER SOURCES,201116(16):6889-6892.
[4] K. Edstrom;T. Gustafsson;J. O. Thomas.The cathode-electrolyte interface in the Li-ion battery[J].Electrochimica Acta,20042/3(2/3):397-403.
[5] Daisuke Mori;Hironori Kobayashi;Masahiro Shikano;Hiroaki Nitani;Hiroyuki Kageyama;Shinji Koike;Hikari Sakaebe;Kuniaki Tatsumi.Bulk and surface structure investigation for the positive electrodes of degraded lithium-ion cell after storage test using X-ray absorption near-edge structure measurement[J].Journal of Power Sources,20091(1):676-680.
[6] Md. Khalilur Rahman;Yoshiyasu Saito.Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells III: An approach to the power fade mechanism using FT-IR-ATR[J].Journal of Power Sources,20072(2):889-894.
[7] Shoichiro Watanabe;Masahiro Kinoshita;Takashi Hosokawa;Kenichi Morigaki;Kensuke Nakura.Capacity fade of LiAl_yNi_(1-x-y)Co_xO_2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAl_yNi_(1-x-y)Co_xO_2 cathode after cycle tests in restricted depth of discharge ranges)[J].Journal of Power Sources,2014Jul.15(Jul.15):210-217.
[8] M. Shikano;H. Kobayashi;S. Koike;H. Sakaebe;E. Ikenaga;K. Kobayashi;K. Tatsumi.Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells II An approach to the power fading mechanism using hard X-ray photoemission spectroscopy[J].Journal of Power Sources,20072(2):795-799.
[9] Seong-Min Bak;Wonyoung Chang;Kyung-Wan Nam.Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged Li_xNi_(0.8)Co_(0.15)Al_(0.05)O2 Cathode Materials[J].Chemistry of Materials: A Publication of the American Chemistry Society,20133(3):337-351.
[10] Hironori Kobayashi;Masahiro Shikano;Shinji Koike;Hikari Sakaebe;Kuniaki Tatsumi.Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells I. An approach to the power fading mechanism using XANES[J].Journal of Power Sources,20072(2):380-386.
[11] Marie Kerlau;Marek Marcinek;Venkat Srinivasan;Robert M. Kostecki.Studies of local degradation phenomena in composite cathodes for lithium-ion batteries[J].Electrochimica Acta,200717(17):5422-5429.
[12] Lei JL;McLarnon F;Kostecki R.In situ Raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-ion battery composite cathode[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,20052(2):952-957.
[13] Y. Kojima;S. Muto;K. Tatsumi;H. Kondo;H. Oka;K. Horibuchi;Y. Ukyo.Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy[J].Journal of Power Sources,201118(18):7721-7727.
[14] H. Kondo;Y. Takeuchi;T. Sasaki;S. Kawauchi;Y. Itou;O. Hiruta;C. Okuda;M. Yonemura;T. Kamiyama;Y. Ukyo.Effects of Mg-substitution in Li(Ni,Co,Al)O_2 positive electrode materials on the crystal structure and battery performance[J].Journal of Power Sources,20072(2):1131-1136.
[15] Cho, Y.;Oh, P.;Cho, J..A new type of protective surface layer for high-capacity ni-based cathode materials: Nanoscaled surface pillaring layer[J].Nano letters,20133(3):1145-1152.
[16] Lee, Eungje;Park, Joong Sun;Wu, Tianpin;Sun, Cheng-Jun;Kim, Hacksung;Stair, Peter C.;Lu, Jun;Zhou, Dehua;Johnson, Christopher S..Role of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3 center dot LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201518(18):9915-9924.
[17] Lee, Min-Joon;Noh, Mijung;Park, Mi-Hee;Jo, Minki;Kim, Hyejung;Nam, Haisol;Cho, Jaephil.The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201525(25):13453-13460.
[18] Li, Xiang;Xie, Zhengwei;Liu, Wenjing;Ge, Wujie;Wang, Hao;Qu, Meizhen.Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi(0.8)Co(0.15)A1(0.05)O(2)[J].Electrochimica Acta,2015:1122-1130.
[19] Bin Huang;Xinhai Li;Zhixing Wang;Huajun Guo;Li Shen;Jiexi Wang.A comprehensive study on electrochemical performance of Mn-surface-modified LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 synthesized by an in situ oxidizing-coating method[J].Journal of Power Sources,2014Apr.15(Apr.15):200-207.
[20] T. Nonaka;C. Okuda;Y. Seno.In situ XAFS and micro-XAFS studies on LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathode material for lithium-ion batteries[J].Journal of Power Sources,20062(2):1329-1335.
[21] Xunhui Xiong;Zhixing Wang;Guochun Yan;Huajun Guo;Xinhai Li.Role of V_2O_5 coating on LiNiO_2based materials for lithium ion battery[J].Journal of Power Sources,2014Jan.1(Jan.1):183-193.
[22] Xu, Yan;Li, Xinhai;Wang, Zhixing;Guo, Huajun;Huang, Bin.Structure and electrochemical performance of TiO2-coated LiNi0.80CO0.15Al0.05O2 cathode material[J].Materials Letters,2015Mar.15(Mar.15):151-154.
[23] Cheng, Cuixia;Yi, Huiyang;Chen, Fang.Effect of Cr2O3 Coating on LiNi1/3Co1/3Mn1/3O2 as Cathode for Lithium-Ion Batteries[J].Journal of Electronic Materials,20149(9):3681-3687.
[24] Sang-Hyuk Lee;Chong Seung Yoon;Khalil Amine;Yang-Kook Sun.Improvement of long-term cycling performance of Li[Ni_(0.8)Co_(0.15)Al_(0.05)] O_2 by AlF_3 coating[J].Journal of Power Sources,2013Jul.15(Jul.15):201-207.
[25] Sung Nam Lim;Wook Ahn;Sun-Hwa Yeon;Seung Bin Park.Enhanced elevated-temperature performance of Li(Ni_(0.8)Co_(0.15)Al_(0.05))O_2 electrodes coated with Li_2O-2B_2O_3 glass[J].Electrochimica Acta,2014:1-9.
[26] Zhao, Enyue;Liu, Xiangfeng;Zhao, Hu;Xiao, Xiaoling;Hu, Zhongbo.Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization[J].Chemical communications,201544(44):9093-9096.
[27] A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries[J].Advanced functional materials,20103(3):485.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%