欢迎登录材料期刊网

材料期刊网

高级检索

具有显著Seebeck效应的碳纤维水泥基复合材料(Carbon fiber reinforced cement-based composites,简写为CFRC)近年来受到广泛关注。综述了CFRC的导电机理、Seebeck效应强化途径及其工程应用前景。CFRC的载流子类型主要包括离子、电子和空穴,并以空穴为主。碳纤维/碳纳米管掺杂,CFRC的 Seebeck系数可提高至约30μV/℃;钢纤维掺杂水泥基材料表现为 n型半导体,其 Seebeck可达68μV/℃;金属氧化物Bi2 O3掺杂可将CFRC的 Seebeck系数稳步提高到100.28μV/℃,而ZnO 和 Fe2 O3掺杂可使CFRC的Seebeck系数分别增大到3300μV/℃和2500μV/℃。这些研究有效地促进了CFRC在城市室外热量的转换收集、工业余热能量收集和长寿命结构健康监测传感器等领域的研究与发展。

Recently,carbon fiber reinforced cement-based composites (CFRC)has been concerned considerably due to its strong Seebeck effect.The electrical conduction mechanism,CFRC-Seebeck effect reinforcement approaches,and potential applica-tions of CFRC are reviewed in this paper.The carrier types of CFRC is mainly related to ionic,electronic and hole carriers,and the hole carriers play the most important role.The Seebeck coefficient of about 30μV/℃ can be obtained by adding carbon fibers or car-bon nanotubes.The steel fiber reinforced cement-based composites belongs to an n-type semiconductor,and its Seebck coefficient can be increased to 68μV/℃.The CFRC-Seebeck coefficient of 100.28μV/℃ can be obtained by mixing Bi2 O3 ,and the largest Seebeck coefficients of 3 300μV/℃ and 2 500μV/℃ can be obtained by adding ZnO and Fe2 O3 ,respectively.These studies have effectively promoted the research and development of CFRC in the fields of urban heat harvesting,energy conservation in buildings,the waste heating collection and structural self-sensing.

参考文献

[1] 黄宏涛;吴荣军;王晓云;房小怡;杜吴鹏.城市热岛效应研究进展[J].河南科学,2015(7):1214-1220.
[2] Bin Shi;Chao-Sheng Tang;Lei Gao;Chun Liu;Bao-Jun Wang.Observation and analysis of the urban heat island effect on soil in Nanjing, China[J].Environmental earth sciences,20121(1):215-229.
[3] 王帅坤;孙文海.碳纤维材料在混凝土受弯构件加固中的应用分析[J].吉林电力,2016(1):36-38.
[4] 姜山;高小建;姚斌.纳米碳纤维混凝土制备及其压敏性能[J].低温建筑技术,2015(1):10-12.
[5] 刘小艳;姚武;吴科如.碳纤维水泥基复合材料温敏特性研究[J].河海大学学报(自然科学版),2007(2):202-204.
[6] 王振军;李克智;王闯.碳纤维增强水泥基复合材料(CFRC)的电学特性[J].材料导报,2009(23):47-51.
[7] 唐祖全;李卓球;侯作富;徐东亮.导电混凝土电热层布置对路面除冰效果的影响[J].武汉理工大学学报,2002(2):45-48.
[8] Wen S.;Chung D.D.L..Seebeck effect in carbon fiber-reinforced cement[J].Cement and Concrete Research,199912(12):1989-1993.
[9] Pichanusakorn, P;Bandaru, P.Nanostructured thermoelectrics[J].Materials Science & Engineering, R. Reports: A Review Journal,20102/4(2/4):19-63.
[10] Cerny R;Nemeckova J;Rovnanikova P;Bayer P.Effect of thermal decomposition processes on the thermal properties of carbon fiber reinforced cement composites in high-temperature range[J].Journal of thermal analysis and calorimetry,20072(2):475-488.
[11] Singh, A.P.;Mishra, M.;Chandra, A.;Dhawan, S.K..Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application[J].Nanotechnology,201146(46):465701-1-465701-9.
[12] 王秀峰;王永兰;金志浩.碳纤维增强水泥复合材料的机敏性[J].硅酸盐学报,1998(2):256-260.
[13] Jun Ren;Shouci Lu.The voltage-current characteristics and dispersion effect of RLW electrostatic disperser[J].Powder Technology,20030(0):261-265.
[14] HUI SUN;DONALD T. MORELLI.Thermoelectric Properties of Co_(1-x)Rh_(x)Si_(0.98)B_(0.02) Alloys[J].Journal of Electronic Materials,20126(6):1125-1129.
[15] Yong Du;Shirley Z. Shen;Kefeng Cai.Research progress on polymer-inorganic thermoelectric nanocomposite materials[J].Progress in Polymer Science,20126(6):820-841.
[16] S.Mingqing;L.Zhuoqiu.Communication A study on thermal self-monitoring carbon fiber reinforced concrete[J].Cement and Concrete Research,19995(5):769-771.
[17] Wen SH.;Chung DDL..Effect of carbon fiber grade on the electrical behavior of carbon fiber reinforced cement[J].Carbon: An International Journal Sponsored by the American Carbon Society,20013(3):369-373.
[18] Sihai Wen;D.D.L.Chung.Thermoelectric behavior of carbon-cement composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,200213(13):2495-2497.
[19] 赵文艳;张文福;马昌恒;才英俊;朱殿瑞.石墨导电混凝土力学性能与热电特性[J].大庆石油学院学报,2008(6):83-85,92.
[20] 姚武;左俊卿;吴科如.碳纳米管-碳纤维/水泥基材料微观结构和热电性能[J].功能材料,2013(13):1924-1927,1931.
[21] Tian ML.;Chen L.;Mao ZQ.;Zhang YH.;Li FQ..Thermoelectric power behavior in carbon nanotubule bundles from 4.2 to 300 K[J].Physical Review.B.Condensed Matter,19983(3):1166-1168.
[22] M. S. Dresselhaus;G. Chen;M. Y. Tang;R. G. Yang;H. Lee;D. Z. Wang;Z. F. Ren;J.-P. Fleurial;P. Gogna.New Directions for Low-Dimensional Thermoelectric Materials[J].Advanced Materials,20078(8):1043-1053.
[23] Wen S.;Chung D.D.L..Seebeck effect in steel fiber reinforced cement[J].Cement and Concrete Research,20004(4):661-664.
[24] Wen S;Chung DDL.Effect of fiber content on the thermoelectric behavior of cement[J].Journal of Materials Science,200413(13):4103-4106.
[25] 姚武;夏强.碲化铋-碳纤维水泥基材料的制备及热电性能[J].功能材料,2014(15):15134-15137,15142.
[26] Jian Wei;Lei Hao;Geping He.Enhanced thermoelectric effect of carbon fiber reinforced cement composites by metallic oxide/cement interface[J].CERAMICS INTERNATIONAL,20146(6):8261-8263.
[27] 程绪想;杨全兵.钢渣的综合利用[J].粉煤灰综合利用,2010(5):45-49.
[28] 唐祖全;童成丰;钱觉时;王智.钢渣混凝土的Seebeck效应研究[J].重庆建筑大学学报,2008(3):125-128.
[29] Chen PW.;Chung DDL..CARBON-FIBER-REINFORCED CONCRETE AS AN INTRINSICALLY SMART CONCRETE FOR DAMAGE ASSESSMENT DURING DYNAMIC LOADING[J].Journal of the American Ceramic Society,19953(3):816-818.
[30] Sihai Wen;D. D. L. Chung.Cement-based thermocouples[J].Cement and Concrete Research,20013(3):507-510.
[31] Wei, Jian;Nie, Zhengbo;He, Geping;Hao, Lei;Zhao, Lili;Zhang, Qian.Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites[J].RSC Advances,201489(89):48128-48134.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%