欢迎登录材料期刊网

材料期刊网

高级检索

利用常规等离子喷涂和高能等离子喷涂工艺分别制备了不同结构的8YSZ热障涂层,研究了不同结构涂层在高温退火(1 250℃,2h)和燃气热冲击条件(1 200℃/900℃)下对CMAS沉积物防护作用.结果表明:提高8YSZ涂层致密度和在其表面制备致密氧化铝封阻层可延缓CMAS沉积物渗入和反应,并提高涂层在CMAS耦合条件下燃气热冲击寿命,在孔隙率12.9%的8YSZ涂层表面制备厚度10~20 μm致密氧化铝层,热冲击寿命提高4.4倍.8YSZ涂层致密度提高或表面致密氧化铝薄层制备,可进一步降低涂层表面粗糙度,同时燃气热冲击条件下氧化铝层自身逐层剥离的失效形式,均能减缓CMAS的粘附;1 250℃下氧化铝层会溶解进入CMAS提高局部Al含量,从而使CMAS中局部低熔点相向高熔点钙长石相转变,会进一步提高界面稳定性.

参考文献

[1] Craig, M.;Ndamka, N. L.;Wellman, R. G.;Nicholls, J. R..CMAS degradation of EB-PVD TBCs: The effect of basicity[J].Surface & Coatings Technology,2015:145-153.
[2] Kim, Hyung N.;Hawron, Martin P.;Hassan, Waled;Jordan, Eric H.;Renfro, Michael W..Contaminant identification during laser cleaning of thermal barrier coatings[J].Surface & Coatings Technology,2015:86-94.
[3] Lihua Gao;Hongbo Guo;Shengkai Gong.Plasma-sprayed La_2Ce_2O_7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration[J].Journal of the European Ceramic Society,201410(10):2553-2561.
[4] Vidal-Setif, M.H.;Chellah, N.;Rio, C.;Sanchez, C.;Lavigne, O..Calcium-magnesium-alumino-silicate(CMAS) degradation of EB-PVD thermal barrier coatings: Characterization of CMAS damage on ex-service high pressure blade TBCs[J].Surface & Coatings Technology,2012:39-45.
[5] Wiesner, Valerie L.;Bansal, Narottam P..Crystallization kinetics of calcium-magnesium aluminosilicate (CMAS) glass[J].Surface & Coatings Technology,2014Pt.C(Pt.C):608-615.
[6] Guillaume Pujol;Florence Ansart;Jean-Pierre Bonino;André Malié;Sarah Hamadi.Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications[J].Surface & Coatings Technology,2013:71-78.
[7] Nadia L. Ahlborg;Dongming Zhu.Calcium-magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings[J].Surface & Coatings Technology,2013:79-87.
[8] Uwe Schulz;Wolfgang Braue.Degradation of La_2Zr_2O_7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al_2O_3-SiO_2) and volcanic ash deposits[J].Surface & Coatings Technology,2013:165-173.
[9] Naraparaju, R.;Schulz, U.;Mechnich, P.;Doebber, P.;Seidel, F..Degradation study of 7 wt.% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO-MgO-Al2O3-SiO2 variants[J].Surface & Coatings Technology,2014:73-81.
[10] Hector F. Garces;Bilge S. Senturk;Nitin P. Padture.In situ Raman spectroscopy studies of high-temperature degradation of thermal barrier coatings by molten silicate deposits[J].Scripta materialia,2014:29-32.
[11] Jing Wu;Hong-bo Guo;Yu-zhi Gao.Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,201110(10):1881-1888.
[12] 苗文辉;王璐;郭洪波;彭徽;王凯;宫声凯.CMAS环境下电子束物理气相沉积热障涂层的热循环行为及失效机制[J].复合材料学报,2012(5):76-82.
[13] Hengbei Zhao;Carlos G. Levi;Haydn N.G.Wadley.Molten silicate interactions with thermal barrier coatings[J].Surface & Coatings Technology,2014:74-86.
[14] Lee, Kuan-I;Wu, Liberty T.;Wu, Rudder T.;Xiao, Ping.Mechanisms and mitigation of volcanic ash attack on yttria stablized zirconia thermal barrier coatings[J].Surface & Coatings Technology,2014:68-72.
[15] Bansal, Narottam P.;Choi, Sung R..Properties of CMAS glass from desert sand[J].CERAMICS INTERNATIONAL,20153 Pt.A(3 Pt.A):3901-3909.
[16] Zhang, Xiao-feng;Zhou, Ke-song;Xu, Wei;Chen, Bo-yu;Song, Jin-bing;Liu, Min.In situ synthesis of alpha-alumina layer on thermal barrier coating for protection against CMAS (CaO-MgO-Al2O3-SiO2) corrosion[J].Surface & Coatings Technology,2015:54-59.
[17] 何箐;吴鹏;屈轶;汪瑞军;王伟平.一种新型CMAS耦合条件下热障涂层热循环实验方法[J].材料工程,2014(12):92-98.
[18] Stephan Kramer;James Yang;Carlos G. Levi.Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al_2O_3-SiO_2 (CMAS) Deposits[J].Journal of the American Ceramic Society,200610(10):3167-3175.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%