欢迎登录材料期刊网

材料期刊网

高级检索

在无水乙醇介质中,合成了4种新型稀土三元固体配合物.通过红外光谱、紫外光谱、元素分析和TG-DTA等技术手段测试,确定了配合物的化学组成为:REL2L'·nH2O(RE:Nd3+,Eu3,La3+,Sc3+;L=全反式维甲酸;L'=L-缬氨酸).利用MTT测试法,检测了配合物对体外培养的人肝癌细胞HepG2、人肺癌细胞A549和人宫颈癌细胞Hela生长的影响.结果表明,4种稀土配合物与稀土硝酸盐、配体全反式维甲酸和L-缬氨酸对3种癌细胞株的生长均有一定的抑制作用,但在一定的浓度范围内,三元固体配合物的抑制效果明显优于稀土硝酸盐和2种配体;稀土配合物对3种癌细胞株生长的抑制作用基本上随浓度的升高而增强,存在一定的时间依赖性和浓度依赖性.为了进一步阐明抗肿瘤作用的原因,利用光谱方法和黏度法的手段,对配合物与DNA之间的相互作用方式做了考察,推测配合物抗肿瘤活性的起效与这种嵌入DNA双螺旋结构的作用方式有关.

参考文献

[1] Xiao B,Ji Y J,Cui M Z,et al.Effects of Lanthanumand Ceriumon Malignant Proliferation and Expression of Tumor-related Gene[J].Chinese J Prevent Med,1997,31 (4):228-230.,1997.
[2] Nie Y X,Chen Y L,Wang X H,et al.Effect of Compounds of La,Sm,Eu,and Yb on HeLa Cell Culture[J].J Chinese Rare Earth Soc,1989,7(4):58-59.,1989.
[3] Li Y X,Chen Z F,Xiong R G,et al.A Mononuclear Complex of Norfloxacin with Silver(Ⅰ) and Properties[J].Inorg Chem Comm,2003,6(7):819-822.,2003.
[4] Hermann T.Industrial Production of Amino Acids by Coryneform Bacteria[J].J Biotechnol,2003,104(1/3):155-172.,2003.
[5] Blombach B,Schreiner M E,Holatko J,et al.L-Valine Production with Pyruvate Dehydrogenase Complex-deficient Corynebacterium Glutamcium[J].Appl Environ Microbiol,2007,73 (7):2079-2084.,2007.
[6] Park J H,Lee K H,Kim T Y,et al.Metabolic Engineering of Escherichia Coli for the Production of L-Valine Based on Transcriptome Analysis and in Silico Gene Knockout Simulation[J].Proc Natl Acad Sci USA,2007,104(19):7797-7802.,2007.
[7] Wada M,Hijikata N,Aoki R,et al.Enhanced Valine Production in Corynebacterium Glutamcium with Defective H+ATPase and C-terminal Truncated Acetohydroxyacid Synthase[J].Biosci Biotehnol Biochem,2008,72:2959-2965.,2008.
[8] LIU Jie,WEI Chunying,YANG Pin.Eu2O3 Nanoparticles and Eu3 + to Inhibition the Action of the Human Liver Cancer Cells Proliferation[J].Acta Chim Sin,2012,70(3):277-283(in Chinese).,2012.
[9] 刘洁,魏春英,杨频.纳米Eu2O3和Eu^3+抑制人肝癌细胞HepG2增殖的作用[J].化学学报,2012(03):277-283.
[10] XU Junpeng,LIU Jingwang,DA Wenyan,et al.Rare Earth-Curcumin-phenanthroline Complexes Fluorescence and Study on the Antibacterial Activity[J].J Mater Sci Technol,2009,27 (1):68-75 (in Chinese),许军鹏,刘景旺,达文燕,等.稀土-姜黄素·菲啰啉配合物荧光和抑菌活性研究[J].中国稀土学报,2009,27(1):68-75.,2009.
[11] 宋玉民,李文娟,杨美玲.稀土-全反式维甲酸-精氨酸三元配合物的合成、表征及抗肿瘤活性研究[J].无机化学学报,2014(05):1087-1096.
[12] Liu X W,Chen Z G,Li L,et al.DNA-binding,Photocleavaage Studies of Ruthenium(Ⅱ) Complexes with 2-(2-Quinoliinyl) imidazo【4,5-f】【1,10】phenanthroline[J].Sepctrochim Acta,Mol Biomol Spectrosc,2013,102:142-149.,2013.
[13] YANG Pin,GAO Fei.Principles of Bioinorganic Chemistry[M].Beijing:Science Press,2002:329-331 (in Chinese).杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002:329-331.,2002.
[14] LU Jixin,ZHANG Guizhu,HUANG Zhina,et al.Effects of Sulfhydryl Compounds with Calf Thymus DNA Purine Metal[J].Acta Chim Sin,2002,60(6):967-972(in Chinese).卢继新,张贵珠,黄志娜,等.巯嘌呤金属配合物与小牛胸腺DNA的作用[J].化学学报,2002,60(6):967-972.,2002.
[15] Arjmand F,Aziz M.Synthesis and Characterization of Dinuclear Macrocyclic Cobalt (Ⅱ),Copper (Ⅱ) and Zinc (Ⅱ) Complexes Derived From 2,2,20,20-S,S【Bis (bis-N,N-2-thiobenzimidazolyloxalato-1,2-ethane)】:DNA Binding and Cleavage Studies[J].Eur J Med Chem,2009,44:834-844.,2009.
[16] Sathyadevi P,Krishnamoorthy P,Bhuvanesh N S P,et al.Organometallic Ruthenium(Ⅱ) Complexes:Synthesis,Structure and Influence of Substitution at Azomethine Carbon Towards DNA/BSA Binding,Radical Scavenging and Cytotoxicity[J].Eur J Med Chem,2012,55:420-431.,2012.
[17] ZHANG Rongying,PANG Daiwen,CAI Ruxiu.DNA and Its Target Molecule Interaction Research Progress[J].Chem J Chinese Univ,1999,20 (8):1201-1207 (in Chinese).张蓉颖,庞代文,蔡汝秀.DNA与其靶向分子相互作用研究进展[J].高等学校化学学报,1999,20(8):1201-1217.,1999.
[18] 黄俊腾,张阳,王湘利,计亮年,刘海洋.磺酸咔咯及其镓(Ⅲ)配合物与DNA的相互作用和光核酸酶活性[J].无机化学学报,2013(08):1649-1656.
[19] HUANG Junteng,ZHANG Yang,WANG Xiangli,et al.Sulfonic Acid Corrole and Gallium (Ⅲ) Interactions and Photo Nuclease Activity of Complexes with D NA[J].Chinese J Inorg Chem,2013,29 (8):1649-1656 (in Chinese).黄俊腾,张阳,王湘利,等.磺酸咔咯及其镓(Ⅲ)配合物与DNA的相互作用和光核酸酶活性[J].无机化学学报,2013,29(8):1649-1656.,2013.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%