欢迎登录材料期刊网

材料期刊网

高级检索

非均相Fenton催化技术解决了均相Fenton反应存在的问题,具有pH适用范围广以及催化剂易于回收利用等优点,因而成为水处理领域的研究热点.本文首先介绍了非均相Fenton反应用于降解有机污染物的发展、反应机理以及机理的研究方法.总结了非均相Fenton催化剂的种类,主要包括铁氧化物、其它金属氧化物、金属有机框架材料.重点讨论了提高非均相Fenton催化剂活性及稳定性的方法,包括通过调控催化剂的形貌、尺寸、孔结构使催化剂具有更高的比表面积,将活性组分负载在具有高比表面积的载体上,通过与其它金属复合以及引入光、超声、微波等外场.最后,对非均相Fenton催化技术的发展进行了展望.

参考文献

[1] Pignatello JJ;Oliveros E;MacKay A.Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J].Critical reviews in environmental science and technology,20061(1):1-84.
[2] Jing Deng;Yisheng Shao;Naiyun Gao;Chaoqun Tan;Shiqing Zhou;Xuhao Hu.CoFe_2O_4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water[J].Journal of hazardous materials,2013Nov.15(Nov.15):836-844.
[3] Xiaobin Hu;Benzhi Liu;Yuehua Deng.Adsorption and heterogeneous Fenton degradation of 17a-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,20113/4(3/4):274-283.
[4] Lili Zhang;Yulun Nie;Chun Hu;Xuexiang Hu.Decolorization of methylene blue in layered manganese oxide suspension with H_2O_2[J].Journal of hazardous materials,20111/3(1/3):780-785.
[5] Liwei. Chen;Jun. Ma;Xuchun. Li.Strong Enhancement on Fenton Oxidation by Addition of Hydroxylamine to Accelerate the Ferric and Ferrous Iron Cycles[J].Environmental Science & Technology: ES&T,20119(9):3925-3930.
[6] Shi-Jie Yuan;Xiao-Hu Dai.Facile synthesis of sewage sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2014:252-258.
[7] Tingting Han;Lingling Qu;Zhijun Luo.Enhancement of hydroxyl radical generation of a solid state photo-Fenton reagent based on magnetite/carboxylate-rich carbon composites by embedding carbon nanotubes as electron transfer channels[J].New Journal of Chemistry,20143(3):942-948.
[8] Weiguang Li;Yong Wang;Angelidaki Irini.Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV-Fenton and identification of reactive oxygen species[J].Chemical engineering journal,2014:1-8.
[9] Li, Renchao;Jin, Xiaoying;Megharaj, Mallavarapu;Naidu, Ravendra;Chen, Zuliang.Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system[J].Chemical engineering journal,2015:587-594.
[10] Peng, Qiusheng;Zhao, Hongying;Qian, Lin;Wang, Yanbin;Zhao, Guohua.Design of a neutral photo-electro-Fenton system with 3D-ordered macroporous Fe2O3/carbon aerogel cathode: High activity and low energy consumption[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2015:157-166.
[11] Qiang Lv;Gang Li;Hongying Sun.Preparation of magnetic core/shell structured y-Fe2O3@Ti-tmSiO2 and its application for the adsorption and degradation of dyes[J].Microporous and mesoporous materials: The offical journal of the International Zeolite Association,2014:7-13.
[12] Cao, Shanshan;Kang, Feifei;Li, Ping;Chen, Rufen;Liu, Hui;Wei, Yu.Photoassisted hetero-Fenton degradation mechanism of Acid Blue 74 by a gamma-Fe2O3 catalyst[J].RSC Advances,201581(81):66231-66238.
[13] Jusoh, R.;Jalil, A. A.;Triwahyono, S.;Idris, A.;Noordin, M. Y..Photodegradation of 2-chlorophenol over colloidal alpha-FeOOH supported mesostructured silica nanoparticles: Influence of a pore expander and reaction optimization[J].Separation and Purification Technology,2015:55-64.
[14] Lincheng Zhou;Yanming Shao;Junrui Liu.Preparation and Characterization of Magnetic Porous Carbon Microspheres for Removal of Methylene Blue by a Heterogeneous Fenton Reaction[J].ACS applied materials & interfaces,201410(10):7275-7285.
[15] Cui, Z.-M.;Chen, Z.;Cao, C.-Y.;Jiang, L.;Song, W.-G..A yolk-shell structured Fe_2O_3@mesoporous SiO_2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes[J].Chemical communications,201323(23):2332-2334.
[16] Zhang, Chao;Yang, Hao-Cheng;Wan, Ling-Shu;Liang, Hong-Qing;Li, Hanying;Xu, Zhi-Kang.Polydopamine-Coated Porous Substrates as a Platform for Mineralized beta-FeOOH Nanorods with Photocatalysis under Sunlight[J].ACS applied materials & interfaces,201521(21):11567-11574.
[17] Xin Zhong;Jacques Barbier Jr;Daniel Duprez.Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2012:123-134.
[18] Yongchuan Wang;Xingxing Shen;Feng Chen.Improving the catalytic activity of CeO2/H2O2 system by sulfation pretreatment of CeO2[J].Journal of molecular catalysis, A. Chemical,2014:38-45.
[19] Ma, Zichuan;Wei, Xiaoyu;Xing, Shengtao;Li, Junshu.Hydrothermal synthesis and characterization of surface-modified delta-MnO2 with high Fenton-like catalytic activity[J].Catalysis Communications,2015:68-71.
[20] Sun, Qiao;Liu, Min;Li, Keyan;Zuo, Yi;Han, Yitong;Wang, Junhu;Song, Chunshan;Zhang, Guoliang;Guo, Xinwen.Facile synthesis of Fe-containing metal-organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature[J].CrystEngComm,201537(37):7160-7168.
[21] Lunhong Ai;Caihong Zhang;Lili Li.Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2014:191-200.
[22] Zhang, Caihong;Ai, Lunhong;Jiang, Jing.Graphene Hybridized Photoactive Iron Terephthalate with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B under Visible Light[J].Industrial & Engineering Chemistry Research,20151(1):153-163.
[23] Chao-Feng Zhang;Ling-Guang Qiu;Fei Ke.A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201345(45):14329-14334.
[24] Li, M.;Zhao, S.;Peng, Y.-F.;Li, B.-L.;Li, H.-Y..A polythreading array formed by a (3,5)-connected 3D anionic network and 1D cationic chains: Synthesis, structure, and catalytic properties[J].Dalton transactions: An international journal of inorganic chemistry,201326(26):9771-9776.
[25] Zhao, Jun;Dong, Wen-Wen;Wu, Ya-Pan;Wang, Ye-Nan;Wang, Chao;Li, Dong-Sheng;Zhang, Qi-Chun.Two (3,6)-connected porous metal-organic frameworks based on linear trinuclear [Co-3(COO)(6)] and paddlewheel dinuclear [Cu-2(COO)(4)] SBUs: gas adsorption, photocatalytic behaviour, and magnetic properties[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201513(13):6962-6969.
[26] Vu, Tuan. A.;Le, Giang H.;Dao, Canh. D.;Dang, Lan. Q.;Nguyen, Kien. T.;Dang, Phuong. T.;Tran, Hoa. T. K.;Duong, Quang. T.;Nguyen, Tuyen. V.;Lee, Gun. D..Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dye degradation[J].RSC Advances,201478(78):41185-41194.
[27] Li, Jing;Yang, Jin;Liu, Ying-Ying;Ma, Jian-Fang.Two Heterometallic-Organic Frameworks Composed of Iron(III)-Salen-Based Ligands and d(10) Metals: Gas Sorption and Visible-Light Photocatalytic Degradation of 2-Chlorophenol[J].Chemistry: A European journal,201511(11):4413-4421.
[28] Jinbin Zhang;Jie Zhuang;Lizeng Gao;Yu Zhang;Ning Gu;Jing Feng;Dongling Yang;Jingdong Zhu;Xiyun Yan.Decomposing Phenol By The Hidden Talent Of Ferromagnetic Nanoparticles[J].Chemosphere: Environmental toxicology and risk assessment,20089(9):1524-1528.
[29] Roger Matta;Khalil Hanna;Serge Chiron.Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals[J].Science of the Total Environment,20071/3(1/3):242-251.
[30] Martin Hermanek;Radek Zboril;Ivo Medrik;Jiri Pechousek;Cenek Gregor.Catalytic Efficiency of Iron(Ⅲ) Oxides in Decomposition of Hydrogen Peroxide: Competition between the Surface Area and Crystallinity of Nanoparticles[J].Journal of the American Chemical Society,200735(35):10929-10936.
[31] Mesut Tekbas;H. Cengiz Yatmaz;Nihal Bektas.Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst[J].Microporous and mesoporous materials: The offical journal of the International Zeolite Association,20083(3):594-602.
[32] Luo, Lei;Dai, Chengyi;Zhang, Anfeng;Wang, Junhu;Liu, Min;Song, Chunshan;Guo, Xinwen.Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation[J].RSC Advances,201537(37):29509-29512.
[33] Luo, Lei;Dai, Chengyi;Zhang, Anfeng;Wang, Junhu;Liu, Min;Song, Chunshan;Guo, Xinwen.A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation[J].Catalysis science & technology,20156(6):3159-3165.
[34] Lan, Huachun;Wang, Aiming;Liu, Ruiping;Liu, Huijuan;Qu, Jiuhui.Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber[J].Journal of hazardous materials,2015Mar.21(Mar.21):167-172.
[35] Zubir, Nor Aida;Yacou, Christelle;Motuzas, Julius;Zhang, Xiwang;Zhao, Xiu Song;da Costa, Joao C. Diniz.The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO-Fe3O4[J].Chemical communications,201545(45):9291-9293.
[36] Xiaoliang Liang;Yuanhong Zhong;Hongping He.The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes[J].Chemical engineering journal,2012:177-184.
[37] Yuanhong Zhong;Xiaoliang Liang;Zisen He.The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: From the perspective of hydroxyl radical generation[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2014:612-618.
[38] Pouran, Shima Rahim;Aziz, A. R. Abdul;Daud, Wan Mohd Ashri Wan;Embong, Zaidi.Niobium substituted magnetite as a strong heterogeneous Fenton catalyst for wastewater treatment[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2015Oct.1(Oct.1):175-187.
[39] Yang, Bo;Tian, Zhang;Wang, Bin;Sun, Zebin;Zhang, Li;Guo, Yaopeng;Li, Haizhen;Yan, Shiqiang.Facile synthesis of Fe3O4/hierarchical-Mn3O4/graphene oxide as a synergistic catalyst for activation of peroxymonosulfate for degradation of organic pollutants[J].RSC Advances,201527(27):20674-20683.
[40] Lejin Xu;Jianlong Wang.Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of 4-Chlorophenol[J].Environmental Science & Technology: ES&T,201218(18):10145-10153.
[41] Xinyue Zhang;Yaobin Ding;Heqing Tang.Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism[J].Chemical engineering journal,2014:251-262.
[42] Yanbin Wang;Hongying Zhao;Mingfang Li.Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2014:534-545.
[43] Klara Rusevova;Roberto Koferstein;Monica Rosell.LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions[J].Chemical engineering journal,2014:322-331.
[44] Ruixiong Huang;Zhanqiang Fang;Xiaomin Yan.Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe_3O_4 magnetic nanoparticles under neutral condition[J].Chemical engineering journal,2012:242-249.
[45] A.Y. Atta;B.Y. Jibril;T.K. Al-Waheibi.Microwave-enhanced catalytic degradation of 2-nitrophenol on alumina-supported copper oxides[J].Catalysis Communications,2012:112-116.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%