针对金属磁记忆技术的焊缝缺陷等级定量化评定这一难题,通过对预制不同缺陷的Q345焊接试件进行疲劳试验,获得焊缝损伤演化临界状态的磁记忆信号特征规律。首次对照X射线定量检测标准和磁记忆检测结果,将焊缝损伤演化状态分为4个等级,即正常状态、应力集中、隐性损伤和宏观损伤。首次引入遗传算法优化的BP神经网络模型对焊缝等级进行磁记忆定量化评价。研究表明,遗传优化的BP网络模型与未优化的BP网络相比,预测结果更加稳定、误差更小,为工程实际中焊缝缺陷等级评定提供新的方法和依据。
In order to quantify defect levels of welded joints by using the metal magnetic memory technology ( MMM) , fatigue experiments were operated to find the MMM feature law of critical damage. The experiment material is Steel Q345 that is prefabricated with incomplete penetration and slag. In the light of the X ray detection national standard and MMM testing signals, welded joints are divided into four levels:normal, stress concentration, hidden damage and macroscopic damage. BP Neural Network ( BPNN) optimized by genetic algorithm is firstly presented to quantify defect levels based on MMM parameters, which indicates that the optimized BPNN is more stable and accurate than BPNN without optimization. This research provides a new scientific tool for practical engineering.
参考文献
[1] | DOUBOV A A .Express method of quality control of a spot resistance welding with usage of metal magnetic memory[J].THERMAL ENGINEERING,1999,46(5):369-372. |
[2] | Shi Changliang;Dong Shiyun;Xu Binshi .Stress concentration degree affects spontaneous magnetic signals of ferromagnetic steel under dynamic tension load[J].NDT & E International: Independent Nondestructive Testing and Evaluation,2010(1):8-12. |
[3] | Jiancheng Leng;Yang Liu;Guoqiang Zhou.Metal magnetic memory signal response to plastic deformation of low carbon steel[J].NDT & E International: Independent Nondestructive Testing and Evaluation,2013:42-46. |
[4] | XU Ming-xiu,XU Min-qiang,LI Jian-wei,X1NG Hai-yan.Metal magnetic memory field characterization at early fatigue damage based on modified Jiles-Atherton model[J].中南大学学报(英文版),2012(06):1488-1496. |
[5] | C.L. Shi;S.Y. Dong;B.S. Xu;P. He .Metal magnetic memory effect caused by static tension load in a case-hardened steel[J].Journal of Magnetism and Magnetic Materials,2010(4):413-416. |
[6] | XU Mingxiu;XU Minqiang;LI Jianwei et al.Using modified J - A model in MMM detection at elastic stress stage[J].Nondestructive Testing and Evaluation,2012,27(2):121-138. |
[7] | Anatoly Dubov;Sergey Kolokolnikov .The metal magnetic memory method application for online monitoring of damage development in steel pipes and welded joints specimens[J].Welding in the World: Journal of the International Institute of Welding: Journal of the International Institute of Welding,2013(1):123-136. |
[8] | 任吉林,孙金立,周培,饶琪,王振.磁记忆二维检测的研究与工程应用[J].机械工程学报,2013(22):8-15. |
[9] | 冷建成,刘扬,周国强,吴泽民,闫天红.铁磁性材料早期损伤的磁无损检测方法综述[J].化工机械,2013(02):139-145. |
[10] | 刘昌奎,陶春虎,陈星,张兵,董世运.金属磁记忆检测技术定量评估构件疲劳损伤研究[J].材料工程,2009(08):33-37. |
[11] | 邢海燕,徐敏强,陈鑫彧,秦萍.焊缝两种典型缺陷的磁记忆特征对比[J].材料科学与工艺,2011(06):65-69. |
[12] | 石常亮,董世运,徐滨士,何鹏.摩擦磨损条件下金属磁记忆检测实验研究[J].材料工程,2009(04):35-38,44. |
[13] | JB/T 4730.2-2005.承压设备无损检测标准第2部分射线检测[S].全国锅炉压力容器标准化技术委员会,2005. |
[14] | 邸新杰,李午申,严春妍,白世武,刘方明,薛振奎.焊接裂纹金属磁记忆信号的特征提取与应用[J].焊接学报,2006(02):19-22. |
[15] | 邢海燕;徐敏强;李建伟.磁记忆检测技术及工程应用[M].北京:中国石化出版社,2011 |
[16] | 徐成 .基于磁记忆技术的再造抽油杆检测与评估[D].大庆:东北石油大学,2012. |
[17] | 万晋,郑津.基于遗传算法和BP神经网络的圆柱壳大开孔接管结构优化研究[J].福州大学学报(自然科学版),2014(05):726-731. |
[18] | 吴欣怡,黄松岭,赵伟.使用改进型BP神经网络量化裂纹漏磁信号[J].无损检测,2009(08):603-605. |
[19] | 卓金武.MATLAB在数学建模中的应用[M].北京:北京航空航天大学出版社,2011 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%