欢迎登录材料期刊网

材料期刊网

高级检索

Ni-Fe合金往往经过热处理才能发挥其最佳性能,但是由于电沉积法制备的Ni-Fe合金箔厚度很薄,在批量化热处理过程中极易产生粘结现象,严重影响产品质量。为了深入研究粘结机理以解决粘结问题,本文通过电子显微镜分析了合金箔粘结部位微观形貌;通过超高温激光共聚焦显微镜,原位在线研究了热处理过程中合金箔表面微观形貌演变,推测了其与表面粘结的联系;同时也对电泳MgO涂层抑制粘结的效果进行了研究。结果表明:电沉积Ni-Fe合金箔在950~1000℃开始发生粘结;在1000℃以上时,合金箔表面发生软化,不仅促进合金箔间的粘附结合,而且加剧了合金箔粘附界面的原子扩散,使得合金箔界面间共生晶粒生成和长大,最终导致粘结。在合金箔表面电泳涂覆MgO,可获得均匀分布的MgO涂层,可以有效起到隔离合金箔的作用,从而达到抑制粘结的目的。

Ni-Fe alloys usually obtain the best performance via heat treatment. However, the thin thickness of Ni-Fe alloy foil prepared by electrodeposition cuases the sticking phenomenon during annealing, which seriously deteriorates the product quality. In order to solve the sticking problem, sticking mechanism was studied in details in this work. The sticking micromorphology was investigated by the Scanning Electron Microscope ( SEM). The evolution of the surface micromorphology of the Ni-Fe alloy foil as well as its sticking phenomenon during annealing was in situ online investigated using an ultra-high temperature confocal laser microscope. The effect of MgO coatings applied to avoid sticking was also studied. The results indicated that the sticking phenomenon occurred at 950~1 000℃. The surface of alloy foil became softening and viscous over 1 000 ℃, which promoted the adhesion between the alloy foils, and enhanced the ability of atomic diffusion. Therefore, the symbiotic grains form and grow at the interface of the alloy foils, leading to sticking phenomenon. Coating MgO on the surface of the alloy foils through electrophoretic deposition can achieve the uniform distribution of the MgO coatings, effectively inhibiting sticking.

参考文献

[1] S. D. Leith;S. Ramli.Characterization of NixFe1-x (0.10 < x <0.95) Electrodeposition from a Family of Sulfamate – Chloride Electrolytes[J].Journal of the Electrochemical Society,19994(4):1431-1435.
[2] 郭占成;刘宇星;刘美凤;卢维昌.电沉积Fe、Ni基合金箔的组织形貌及磁性能[J].中国有色金属学报,2004(2):273-279.
[3] 董虎林;郭占成;王志.热处理对电沉积Ni-Fe合金箔微观结构和磁性能的影响[J].北京科技大学学报,2009(3):357-361.
[4] 罗裕厚.冷轧钢卷产生粘结的机理及控制措施[J].钢铁钒钛,2002(02):29-33.
[5] 张驰;王晓南;刘振宇;王国栋.铁素体不锈钢高温氧化层生长及热轧粘辊研究[J].东北大学学报:自然科学版,2012(2):195-198.
[6] 邓菡.冷轧钢卷粘结缺陷产生原因及预防措施[J].轧钢,2006(02):61-63.
[7] 赵勣;杨永明.冷轧钢卷退火过程粘结问题的数值研究[J].工程热物理学报,2005(2):273-276.
[8] Sticking mechanism during hot rolling of two stainless steels[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,19982(2):696-702.
[9] Dae Jin Ha;Hyo Kyung Sung;Sunghak Lee;Jong Seog Lee;Yong Deuk Lee.Analysis and prevention of sticking occurring during hot rollingof ferritic stainless steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):66-73.
[10] Jin w.;Chol J.Y..Nucleation and Growth Process of Sticking Particles in Ferritic Stainless Steel[J].ISIJ International,20008(8):789-793.
[11] CHANG-YOUNG SON;CHANG KYU KIM;DAE JIN HA.Mechanisms of Sticking Phenomenon Occurring during Hot Rolling of Two Ferritic Stainless Steels[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,200711(11):2776-2787.
[12] Y.-W. Zhong;Z. Wang;X.-Z. Gong.Sticking behavior caused by sintering in gas fluidisation reduction of haematite[J].Ironmaking & Steelmaking: Products and applications,20121(1):38-44.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%