欢迎登录材料期刊网

材料期刊网

高级检索

硅基闪存是当前半导体市场的主流非易失性存储器,但其小型化日益接近物理极限。阳离子迁移型阻变存储器是下一代高速、高密度和低功耗非易失性存储器的有力竞争者之一,近些年受到科学界和工业界的广泛关注。本文从材料、阻变机理和器件性能3个方面综述了阳离子迁移型阻变存储器的研究进展,其中材料部分包括电极材料和存储介质,阻变机理部分包括金属导电细丝的存在、生长模式和生长动力学,而器件性能部分包括开关比、擦写速度、擦写功耗、循环耐受性、数据保持特性以及器件小型化潜力。最后,对本领域的未来研究重点进行了展望。

Silicon?based Flash memory is currently the mainstream nonvolatile memory in semiconductor market, but its miniaturization will reach physical limit in the near future. As one promising candidate for next?generation high?speed, high?density, and low?power nonvolatile memory, cation?migration?based resistive random access memory ( RRAM ) has aroused much attention from academic and industrial communities in recent years. This review article provides a comprehensive summary of the recent progress in cation?migration?based RRAM in terms of materials, switching mechanism, and device performance. The materials involved are grouped into electrode materials and storage media. The switching mechanism section includes the existence, growth modes, and growth kinetics of metal filaments. For the device performance section, ON/OFF ratio, write/erase time, write/erase energy, endurance, retention, and the miniaturization of cation?migration?based RRAM is successively summarized in detail. At last, the focuses of further research concerning cation?migration?based RRAM are suggested.

参考文献

[1] Mao, D.;Mejia, I.;Salas-Villasenor, A.L.;Singh, M.;Stiegler, H.;Gnade, B.E.;Quevedo-Lopez, M.A..Ferroelectric random access memory based on one-transistor-one-capacitor structure for flexible electronics[J].Organic electronics,20132(2):505-510.
[2] 付永忠;程广贵;王权.溅射功率和退火温度对GeSbTe相变薄膜内应力的影响[J].材料科学与工艺,2012(02):145-148.
[3] Yang, J.J.;Strukov, D.B.;Stewart, D.R..Memristive devices for computing (Review)[J].Nature nanotechnology,20131(1):13-24.
[4] Guang Chen;Cheng Song;Chao Chen;Shuang Cao;Fei Zeng;Feng Pan.Resistive Switching and Magnetic Modulation in Cobalt-Doped ZnO[J].Advanced Materials,201226(26):3515-3520.
[5] Gao, S.;Zeng, F.;Chen, C.;Tang, G.;Lin, Y.;Zheng, Z.;Song, C.;Pan, F..Conductance quantization in a Ag filament-based polymer resistive memory[J].Nanotechnology,201333(33):335201-1-335201-7.
[6] Xing L. Shao;Jin S. Zhao;Kai L. Zhang.Two-Step Reset in the Resistance Switching of the AI/TiO_x/Cu Structure[J].ACS applied materials & interfaces,201321(21):11265-11270.
[7] Toshitsugu Sakamoto;Kevin Lister;Naoki Banno;Tsuyoshi Hasegawa;Kazuya Terabe;Masakazu Aono.Electronic transport in Ta_(2)O_(5) resistive switch[J].Applied physics letters,20079(9):092110-1-092110-3-0.
[8] C. Chen;Y. C. Yang;F. Zeng;F. Pan.Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device[J].Applied physics letters,20108(8):083502-1-083502-3.
[9] Yuchao Yang;Xiaoxian Zhang;Min Gao.Nonvolatile resistive switching in single crystalline ZnO nanowires[J].Nanoscale,20114(4):1917-1921.
[10] Shuang Gao;Chao Chen;Cheng Song.Dynamic Processes of Resistive Switching in Metallic Filament-Based Organic Memory Devices[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201233(33):17955-17959.
[11] Hubbard, William A.;Kerelsky, Alexander;Jasmin, Grant;White, E. R.;Lodico, Jared;Mecklenburg, Matthew;Regan, B. C..Nanofilament Formation and Regeneration During Cu/Al2O3 Resistive Memory Switching[J].Nano letters,20156(6):3983-3987.
[12] Yang, YC;Pan, F;Liu, Q;Liu, M;Zeng, F.Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application[J].Nano letters,20094(4):1636-1643.
[13] S. Gao;C. Song;C. Chen;F. Zeng;F. Pan.Formation process of conducting filament in planar organic resistive memory[J].Applied physics letters,201314(14):141606-1-141606-5.
[14] Tsuruoka, Tohru;Valov, Ilia;Tappertzhofen, Stefan;van den Hurk, Jan;Hasegawa, Tsuyoshi;Waser, Rainer;Aono, Masakazu.Redox Reactions at Cu,Ag/Ta2O5 Interfaces and the Effects of Ta2O5 Film Density on the Forming Process in Atomic Switch Structures[J].Advanced functional materials,201540(40):6374-6381.
[15] Yang Yin Chen;G. Pourtois;C. Adelmann;L. Goux;B. Govoreanu;R. Degreave;M. Jurczak;J. A. Kittl;G. Groeseneken;D. J. Wouters.Insights into Ni-filament formation in unipolar-switching Ni/HfO_(2)/TiN resistive random access memory device[J].Applied physics letters,201211(11):113513-1-113513-4.
[16] Jun Sun;Qi Liu;Hongwei Xie;Xing Wu;Feng Xu;Tao Xu;Shibing Long;Hangbing Lv;Yingtao Li;Litao Sun;Ming Liu.In situ observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory[J].Applied physics letters,20135(5):053502-1-053502-4.
[17] Christopher Pearson;Leon Bowen;Myung-Won Lee;Alison L. Fisher;Katharine E. Linton;Martin R. Bryce;Michael C. Petty.Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units[J].Applied physics letters,201321(21):213301-1-213301-4.
[18] Pinggang Peng;Dan Xie;Yi Yang;Yongyuan Zang;Xili Gao;Changjian Zhou;Tingting Feng;He Tian;Tianling Ren;Xiaozhong Zhang.Resistive switching behavior in diamond-like carbon films grown by pulsed laser deposition for resistance switching random access memory application[J].Journal of Applied Physics,20128(8):084501-1-084501-4.
[19] Yang, Zhihuan;Zhan, Qingfeng;Zhu, Xiaojian;Liu, Yiwei;Yang, Huali;Hu, Benlin;Shang, Jie;Pan, Liang;Chen, Bin;Li, Run-Wei.Tunneling magnetoresistance induced by controllable formation of Co filaments in resistive switching Co/ZnO/Fe structures[J].EPL,20145(5)
[20] Xiaojian Zhu;Wenjing Su;Yiwei Liu;Benlin Hu;Liang Pan;Wei Lu;Jiandi Zhang;and Run-Wei Li.Observation of Conductance Quantization in Oxide-Based Resistive Switching Memory[J].Advanced Materials,201229(29):3941-3946.
[21] Unnat S. Bhansali;Mohd A. Khan;Dongkyu Cha;Mahmoud N. AlMadhoun;Ruipeng Li;Long Chen;Aram Amassian;Ihab N. Odeh;Husam N. Alshareef.Metal-Free, Single-Polymer Device Exhibits Resistive Memory Effect[J].ACS nano,201312(12):10518-10524.
[22] Xuezeng Tian;Shize Yang;Min Zeng;Lifen Wang;Jiake Wei;Zhi Xu;Wenlong Wang;Xuedong Bai.Bipolar Electrochemical Mechanism for Mass Transfer in Nanoionic Resistive Memories[J].Advanced Materials,201422(22):3649-3654.
[23] G. S. Tang;F. Zeng;C. Chen;H. Y. Liu;S. Gao;S. Z. Li;C. Song;G. Y. Wang;F. Pan.Resistive switching with self-rectifying behavior in Cu/SiO_x/Si structure fabricated by plasma-oxidation[J].Journal of Applied Physics,201324(24):244502-1-244502-5.
[24] Hsiung, C.-P.;Liao, H.-W.;Gan, J.-Y.;Wu, T.-B.;Hwang, J.-C.;Chen, F.;Tsai, M.-J..Formation and instability of silver nanofilament in Ag-based programmable metallization cells[J].ACS nano,20109(9):5414-5420.
[25] Liu, Q.;Long, S.;Lv, H.;Wang, W.;Niu, J.;Huo, Z.;Chen, J.;Liu, M..Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode[J].ACS nano,201010(10):6162-6168.
[26] Masaki Kudo;Masashi Arita;Yuuki Ohno;Yasuo Takahashi.Filament formation and erasure in molybdenum oxide during resistive switching cycles[J].Applied physics letters,201417(17):173504-1-173504-4.
[27] Nanometer-scale switches using copper sulfide[J].Applied physics letters,200318(18):3032-3034.
[28] Xu, Z.;Bando, Y.;Wang, W.;Bai, X.;Golberg, D..Real-time in situ HRTEM-resolved resistance switching of Ag_2S nanoscale ionic conductor[J].ACS nano,20105(5):2515-2522.
[29] F. Zhuge;W. Dai;C. L. He;A. Y. Wang;Y. W. Liu;M. Li;Y. H. Wu;P. Cui;Run-Wei Li.Nonvolatile resistive switching memory based on amorphous carbon[J].Applied physics letters,201016(16):163505-1-163505-3.
[30] Yuchao Yang;Peng Gao;Siddharth Gaba;Ting Chang;Xiaoqing Pan;Wei Lu.observation of conducting filament growthin nanoscale resistive memories[J].Nature Communications,20123(3):732/1-732/8.
[31] Masamitsu Haemori;Takahiro Nagata;Toyohiro Chikyow.Impact of Cu Electrode on Switching Behavior in a Cu/HfO_2/Pt Structure and Resultant Cu Ion Diffusion[J].Applied physics express,20096(6):4-6.
[32] Busby, Y.;Nau, S.;Sax, S.;List-Kratochvil, E. J. W.;Novak, J.;Banerjee, R.;Schreiber, F.;Pireaux, J. -J..Direct observation of conductive filament formation in Alq3 based organic resistive memories[J].Journal of Applied Physics,20157(7):075501-1-075501-6.
[33] C. L. He;F. Zhuge;X. F. Zhou;M. Li;G. C. Zhou;Y. W. Liu;J. Z. Wang;B. Chen;W. J. Su;Z. P. Liu;Y. H. Wu;P. Cui;Run-Wei Li.Nonvolatile resistive switching in graphene oxide thin films[J].Applied physics letters,200923(23):232101-1-232101-3.
[34] Byungjin Cho;Jin-Mun Yun;Sunghoon Song;Yongsung Ji;Dong-Yu Kim;Takhee Lee.Direct Observation of Ag Filamentary Paths in Organic Resistive Memory Devices[J].Advanced functional materials,201120(20):3976-3981.
[35] Hyuk-Jae Jang;Oleg A. Kirillov;Oana D. Jurchescu;Curt A. Richter.Spin transport in memristive devices[J].Applied physics letters,20124(4):043510-1-043510-4.
[36] Otsuka, Shintaro;Hamada, Yoshifumi;Shimizu, Tomohiro;Shingubara, Shoso.Ferromagnetic nano-conductive filament formed in Ni/TiO2/Pt resistive-switching memory[J].Applied physics, A. Materials science & processing,20152(2):613-619.
[37] Sang-Jun Choi;Gyeong-Su Park;Ki-Hong Kim;Soohaeng Cho;Woo-Young Yang;Xiang-Shu Li;Jung-Hwan Moon;Kyung-Jin Lee;Kinam Kim.In Situ Observation of Voltage-Induced Multilevel Resistive Switching in Solid Electrolyte Memory[J].Advanced Materials,201129(29):3272-3277.
[38] Qi Liu;Jun Sun;Hangbing Lv;Shibing Long;Kuibo Yin;Neng Wan;Yingtao Li;Litao Sun;Ming Liu.Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte-Based ReRAM[J].Advanced Materials,201214(14):1844-1849.
[39] Onofrio, Nicolas;Guzman, David;Strachan, Alejandro.Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells[J].Nature materials,20154(4):440-446.
[40] C. Schindler;M. Weides;M. N. Kozicki;R. Waser.Low current resistive switching in Cu-SiO_(2) cells[J].Applied physics letters,200812(12):122910-1-122910-3-0.
[41] Chen, C.;Gao, S.;Tang, G.;Song, C.;Zeng, F.;Pan, F..Cu-Embedded AlN-Based Nonpolar Nonvolatile Resistive Switching Memory[J].IEEE Electron Device Letters,201212(12):1711-1713.
[42] Shimeng Yu;Bin Gao;Zheng Fang;Hongyu Yu;Jinfeng Kang;H.-S. Philip Wong.A Low Energy Oxide-Based Electronic Synaptic Device for Neuromorphic Visual Systems with Tolerance to Device Variation[J].Advanced Materials,201312(12):1774-1779.
[43] Sizhao Li;Fei Zeng;Chao Chen.Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system[J].Journal of Materials Chemistry, C. materials for optical and electronic devices,201334(34):5292-5298.
[44] Tiangui You;Yao Shuai;Wenbo Luo;Nan Du;Danilo Buerger;Ilona Skorupa;Rene Huebner;Stephan Henker;Christian Mayr;Rene Schueffny;Thomas Mikolajick;Oliver G. Schmidt;Heidemarie Schmidt.Exploiting Memristive BiFeO_3 Bilayer Structures for Compact Sequential Logics[J].Advanced functional materials,201422(22):3357-3365.
[45] Siemon, Anne;Breuer, Thomas;Aslam, Nabeel;Ferch, Sebastian;Kim, Wonjoo;van den Hurk, Jan;Rana, Vikas;Hoffmann-Eifert, Susanne;Waser, Rainer;Menzel, Stephan;Linn, Eike.Realization of Boolean Logic Functionality Using Redox-Based Memristive Devices[J].Advanced functional materials,201540(40):6414-6423.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%