欢迎登录材料期刊网

材料期刊网

高级检索

为优化铝合金均匀化退火后的冷却工艺参数,采用动态电阻法、扫描电镜、透射电镜观察、能谱分析和硬度测试等方法,研究了均匀化处理后的冷却条件对Al-4%Cu合金组织性能的影响.获得的电阻率-温度曲线与材料的脱溶行为有良好的相关性.随着均匀化处理后冷却速率的降低,实验合金在冷却过程中会依次析出平衡相θ、亚稳相θ′和θ″.绘制了实验合金的CCT图,确定的脱溶敏感温度区间为500~300℃.选用合适的冷却工艺可以改善合金的组织性能,冷却时间超过1000 min,合金有较低的硬度和电阻率.当实验合金均匀化后冷却至室温的时间处于19.4~184.1 min时会析出θ″相,导致硬度和电阻率上升,不利于后续的塑性加工,应该尽量避免.

In order to optimize the cooling parameters after homogenization, the microstructure and properties evolutions during the cooling processes have been investigated by in?situ electrical resistivity measurements, scanning electron microscopy ( SEM) , transmission electron microscopy ( TEM) , energy dispersive spectrometer ( EDS) and hardness test. The result has shown that the electrical resistivity curves have a good agreement with the precipitation behaviors. There were three types of precipitates in the studied alloy under different cooling conditions. And the precipitation sequence was equilibrium θ phase, metastable θ′ phase and θ″ phase. The hardness?time and resistivity?time curves revealed that choosing a suitable cooling condition could improve the microstructures and performance of the alloy. The optimal cooling time was exceeding 1 000 min, so that the hardness and resistivity of the alloy was located in a low level. However, the cooling should avoid being finished in the 19.4~184.1 min. The precipitation of θ″phase in this range would lead to the increasing of hardness and resistivity, which was harmful to the subsequent plastic working.

参考文献

[1] 刘晓艳;潘清林;陆智伦;刘畅;何运斌;李文斌.Al-Cu-Mg-Ag耐热铝合金均匀化处理[J].材料科学与工艺,2011(04):28-32.
[2] 李雪峰;张辉;蒋福林.新型Al-Mn合金均匀化处理过程中组织和性能演变[J].中国有色金属学报,2014(2):380-386.
[3] 李红英;苏雄杰;尹浩;黄德胜.Al-Cu-Li-Mn-Zr-Ti合金在均匀化过程中的组织演变[J].中国有色金属学报(英文版),2013(9):2543-2550.
[4] Yan Liu;Darning Jiang;Wenlong Xie.Solidification phases and their evolution during homogenization of a DC cast Al-8.35Zn-2.5Mg-2.25Cu alloy[J].Materials Characterization,2014:173-183.
[5] Haijun Wang;Ju Xu;Yonglin Kang.Study on inhomogeneous characteristics and optimize homogenization treatment parameter for large size DC ingots of Al-Zn-Mg-Cu alloys[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:19-24.
[6] 白素春;陈艳丽;胡云龙.大型铝合金简体铸件的质量控制[J].特种铸造及有色合金,2014(6):653-655.
[7] 宋力强;刘浩;杜会军;高鹏.热压成形在车身上的典型应用与研究[J].材料科学与工艺,2014(2):49-54.
[8] 李红英;宾杰;赵延阔;王晓峰.用原位电压法测定铝合金的CCT图[J].中国有色金属学报(英文版),2011(9):1944-1949.
[9] Li, H. Y.;Liu, J. J.;Yu, W. C.;Li, D. W..Development of non-linear continuous cooling precipitation diagram for Al-Zn-Mg-Cu alloy[J].Materials Science and Technology: MST: A publication of the Institute of Metals,201512(12):1443-1451.
[10] 刘志华;刘瑞金.牛顿冷却定律的冷却规律研究[J].山东理工大学学报(自然科学版),2005(6):23-27.
[11] Milkereit, B.;Beck, M.;Reich, M.;Kessler, O.;Schick, C..Precipitation kinetics of an aluminium alloy during Newtonian cooling simulated in a differential scanning calorimeter[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,20111/2(1/2):86-95.
[12] Y. Zhang;B. Milkereit;O. Kessler.Development of continuous cooling precipitation diagrams for aluminium alloys AA7150 and AA7020[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:581-589.
[13] 王天资;巫瑞智;张景怀;刘滨.铝导电材料的研究进展[J].材料科学与工艺,2014(6):53-61.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%