以海藻作为固相碳源,利用海藻对金属离子具有吸附性能的特点,在未进行生物质材料改性的条件下,实现海藻生物质材料对催化剂金属离子的均匀吸附.本文结合原位高温金属催化和化学活化的方法制备三维多孔石墨烯,并研究了其作为超级电容器电极材料的电化学性能.通过扫描电镜、透射电镜、X射线衍射、拉曼光谱、氮气吸附等手段对三维多孔石墨烯的形貌与结构进行表征分析.研究结果表明,制备的三维多孔石墨烯具有片层状三维网络结构,且片层较薄,并具有较高的石墨化程度,其比表面积达到1700 m2/g,孔径分布主要在2~10 nm.以该三维多孔石墨烯材料作为超级电容器电极材料,进行电化学性能表征,发现在较低的电压扫速下得到的比电容量为90 F/g,同时,该材料还具有较高的能量密度和功率密度.以海藻为固相碳源制备得到的三维多孔石墨烯材料在超级电容器领域具有一定的应用前景.
The alga as solid carbon source, which has adsorption characteristics for metal ions, can adsorb metal ion catalyst uniformly without the conditions of biomass material modification. Three dimensional porous graphene was synthesized by combination of high temperature metallic catalysis and chemical activation using alga as the precursor. The morphology and structure of the three dimensional porous graphene was characterized with scanning electron microscope ( SEM ) , transmission electron microscopy ( TEM ) , X?ray diffraction (XRD), Raman and N2 adsorption/desorption, while its capacitive properties were investigated using cyclic voltammetry ( CV) and electrochemical impedance spectroscopy ( EIS) techniques. The results showed that the porous graphene had three?dimensional network structure, with a relatively high graphitization degree and a high specific surface area of 1 700 m2/g. The internal pore size of porous graphene ranged from 2 to 10 nm. The supercapacitor based on the porous graphene showed good electrochemical capacitance ( up to 90 F/g at 1 mV/s) . In the two?electrode symmetric supercapacitor, relatively high energy densities and power densities could be achieved.
参考文献
[1] | Li Li Zhang;X. S. Zhao.Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,20099(9):2520-2531. |
[2] | Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone.Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,20085887(5887):385-388. |
[3] | Balandin AA;Ghosh S;Bao WZ;Calizo I;Teweldebrhan D;Miao F;Lau CN.Superior thermal conductivity of single-layer graphene[J].Nano letters,20083(3):902-907. |
[4] | Martin, P..Electrochemistry of gaphene: New horizons for sensing and energy storage[J].Chemical record,20094(4):211-223. |
[5] | 石微微;晏菲;周国珺;叶志凯;奚凤娜.三维石墨烯材料制备方法的研究进展[J].化学通报(印刷版),2013(11):988-993. |
[6] | Zhong-Li Wang;Dan Xu;Ji-Jing Xu;Lei-Lei Zhang;Xin-Bo Zhang.Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O_2 Batteries[J].Advanced functional materials,201217(17):3699-3705. |
[7] | Bi, Hui;Chen, I-Wei;Lin, Tianquan;Huang, Fuqiang.A New Tubular Graphene Form of a Tetrahedrally Connected Cellular Structure[J].Advanced Materials,201539(39):5943-5949. |
[8] | Yanwu Zhu;Shanthi Murali;Meryl D. Stoller;K. J. Ganesh;Weiwei Cai;Paulo J. Ferreira;Adam Pirkle;Robert M. Wallace;Katie A. Cychosz;Matthias Thommes;Dong Su;Eric A. Stach;Rodney S. Ruoff.Carbon-Based Supercapacitors Produced by Activation of Graphene[J].Science,2011Jun.24 TN.6037(Jun.24 TN.6037):1537-1541. |
[9] | Lee, J.-S.;Kim, S.-I.;Yoon, J.-C.;Jang, J.-H..Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor[J].ACS nano,20137(7):6047-6055. |
[10] | Shuhe Liu;Shuchun Zhao;Yaochun Yao;Peng Dong;Chao Yang.Crystallined Hybrid Carbon Synthesized by Catalytic Carbonization of Biomass and in-situ Growth of Carbon Nanofibers[J].材料科学技术(英文版),2014(5):466-472. |
[11] | 丁兰平;黄冰心;谢艳齐.中国大型海藻的研究现状及其存在的问题[J].生物多样性,2011(6):798-804. |
[12] | 张永亮;张浩江;谢水波;唐东山;陈珊;王水云.藻类吸附重金属的研究进展[J].铀矿冶,2009(1):31-37. |
[13] | C. Portet;P. L. Taberna;P. Simon;C. Laberty-Robert.Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications[J].Electrochimica Acta,20046(6):905-912. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%