腐蚀与防护, 2016, 37(11): 892-895. doi: 10.11973/fsyfh-201611007
热等静压对Inconel 690合金堆焊层腐蚀行为的影响
车洪艳 1, , 陈峰 2, , 法(Citrate)和聚乙烯醇法(PVA)合成了LSCF纳米粉体.采用热重(TG)、差热分析(DTA)、傅立叶红外光谱(FT-IR)、X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)和BET等技术比较研究了两种方法合成LSCF的成胶过程,晶相形成过程和微观形貌等的异同,并比较了它们的制备成本.结果表明,二种方法均在800℃煅烧可得到钙钛矿纯相,成相过程中都有碳酸锶生成.柠檬酸法和聚乙烯醇法所得粉体粒度分别30.8nm和34.2nm;比表面积分别为37.4m2/g和28.2m2聚乙烯醇法的制粉周期较短、合成过程要求没有柠檬酸法严格、制备成本也稍低,因此聚乙烯醇法更适于商业化生产.","authors":[{"authorName":"刘石明","id":"05615f48-d4c7-4503-879b-eb101c6c6dfc","originalAuthorName":"刘石明"},{"authorName":"邢长生","id":"91e0f51e-b882-4ef1-adb4-4583fb301a37","originalAuthorName":"邢长生"},{"authorName":"钱晓良","id":"81039cb7-6a06-4da6-8049-6fbf12153067","originalAuthorName":"钱晓良"},{"authorName":"肖建中","id":"35518025-1b9a-41a4-8f29-58fbdaad5850","originalAuthorName":"肖建中"}],"doi":"","fpage":"169","id":"67a40365-638d-4605-a6a0-0f9481b84856","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b8ca7717-d991-4038-aae8-b0aa81b5cda7","keyword":"La0.8Sr0.2Co0.5Fe0.5O3","originalKeyword":"La0.8Sr0.2Co0.5Fe0.5O3"},{"id":"ccc37b13-8dec-4ff6-9df5-8b1652060d20","keyword":"柠檬酸法","originalKeyword":"柠檬酸法"},{"id":"0dae86a4-9635-4cae-a13e-315cbdf04998","keyword":"聚乙烯醇法","originalKeyword":"聚乙烯醇法"},{"id":"367ecf39-2a64-4591-9d6d-f46c3514998b","keyword":"纳米材料","originalKeyword":"纳米材料"}],"language":"zh","publisherId":"clkxygc200802003","title":"柠檬酸法和聚乙烯醇法制备La0.8Sr0.2Co0.5Fe0.5O3纳米材料工艺过程及微观形貌比较","volume":"26","year":"2008"},{"abstractinfo":"研究了不同浓度聚乙烯醇水溶液的粘度行为.以恒定外加盐稀释法,用乌氏粘度计测得不同外加盐浓度聚乙烯醇稀溶液的粘度,计算溶液的特性粘数和Huggins常数.获得聚乙烯醇水溶液的临界交叠浓度及凝胶转变的热函.确定了不同聚乙烯醇和外加盐浓度下聚乙烯醇水溶液的溶胶-凝胶转变的边界条件.结果表明,聚乙烯醇水溶液粘度对外加盐或pH值较不敏感,从而使聚乙烯醇作为一种用于恶劣环境下三次采油的水溶性高分子将具有广阔的应用前景.","authors":[{"authorName":"庄银凤","id":"f8ec1b9e-65e0-497f-a6f1-5e018f7ea8e5","originalAuthorName":"庄银凤"},{"authorName":"朱仲祺","id":"ad471eef-b0ad-4bdf-9075-0b554059cdf8","originalAuthorName":"朱仲祺"},{"authorName":"朱耀伟","id":"18747c5b-cb3d-4e16-b482-ac555f1c8b42","originalAuthorName":"朱耀伟"},{"authorName":"陈留伟","id":"099c260c-0f82-4aa0-ac31-a1ea15766cf0","originalAuthorName":"陈留伟"}],"doi":"","fpage":"145","id":"e8c39ea1-966d-4a64-ba30-7d75058db812","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"914d65b8-abba-4729-901b-747b613ddb3c","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"b89ad189-1f87-45d6-b573-cba57af0d42d","keyword":"粘度","originalKeyword":"粘度"},{"id":"e9b32402-a95e-4275-a803-74ca0b8eb93e","keyword":"溶胶-凝胶转变","originalKeyword":"溶胶-凝胶转变"},{"id":"efcecc0f-0cd0-49c9-aefe-50f878d96ad2","keyword":"三次采油","originalKeyword":"三次采油"}],"language":"zh","publisherId":"gfzclkxygc199904043","title":"聚乙烯醇水溶液的粘度行为研究","volume":"15","year":"1999"},{"abstractinfo":"具有生物活性和生物相容性的羟基磷灰石/高分子复合材料的合成和可控制备,是当今生物材料领域研究的重要热点,在生物可降解聚乙烯醇高分子模板中,采用原位水热法,系统研究了具有生物活性的纳米HAP的可控制备,并对水热时间和模板剂浓度对羟基磷灰石/聚乙烯醇复合材料中HAP微粒形貌、大小的影响进行系统研究.结果表明,水熟时间从0h增加到16h,PVA/HAP微粒中HAP形貌逐渐由不规整的球状、短棒状变为规整的长棒状,水热时间从16h增加到72h,长棒状的PVA/HAP微粒的形貌变化不大;模板高分子(聚乙烯醇)浓度越大,获得的HAP微粒越小.","authors":[{"authorName":"高翔","id":"06209719-9084-4f54-8d58-92ed14181030","originalAuthorName":"高翔"},{"authorName":"光善仪","id":"bee2c12b-aa6a-4f41-86ea-3142ee2b1c04","originalAuthorName":"光善仪"},{"authorName":"徐洪耀","id":"6440489d-1a54-4bb4-ad81-497bff68c425","originalAuthorName":"徐洪耀"},{"authorName":"沈卫华","id":"20f27761-2eb3-4281-b9b8-64d985099aff","originalAuthorName":"沈卫华"},{"authorName":"顾莉琴","id":"a265012b-638b-4dfe-8fef-bae0366cefa4","originalAuthorName":"顾莉琴"},{"authorName":"巨安奇","id":"f5fc4ec2-8569-4b67-ab71-eb60f76da2bc","originalAuthorName":"巨安奇"}],"doi":"","fpage":"1001","id":"40455eff-1005-450f-877d-ace96565ef36","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c5a72242-b0d0-4ca3-9cf9-09b4d73a4534","keyword":"原位法","originalKeyword":"原位法"},{"id":"53c184c3-99bd-40a5-b288-17a02eebfd3b","keyword":"水热法","originalKeyword":"水热法"},{"id":"c6c537f5-daec-4bd4-bbc4-0ac4f2640cd7","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"fe1b004a-b002-4564-8477-8c0df653c68e","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"e1010980-49da-4297-a363-5dd4a66d0927","keyword":"生物材料","originalKeyword":"生物材料"}],"language":"zh","publisherId":"gncl200906036","title":"聚乙烯醇模板中原位水热法羟基磷灰石纳米颗粒的控制制备及表征","volume":"40","year":"2009"},{"abstractinfo":"采用一种无机改性交联剂可以有效屏蔽聚乙烯醇(PVA)上部分羟基,改性后的PVA与硅溶胶产生半互穿网络(Semi-IPN)连接,形成复合胶.所得的复合胶既有聚乙烯醇的优良成膜性,又有硅溶胶的耐水性和硬度,再加入优质廉价的颜填料,适当调节体系性能,便可生产出性价比高的环保水溶性建筑涂料.","authors":[{"authorName":"金贞玉","id":"1cf9c0bf-c9cc-4d7a-992c-98245ad615ed","originalAuthorName":"金贞玉"},{"authorName":"邹国华","id":"645cc5a6-e95c-4662-a68f-4bd7484c324f","originalAuthorName":"邹国华"}],"doi":"","fpage":"41","id":"bc52412b-811f-4457-8e24-90c6f9eae45f","issue":"3","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"4f856a0f-f4ba-4a62-8e01-025351c8df3a","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"973e47e6-a9fd-432e-8df9-11fcb1b9ee12","keyword":"硅溶胶","originalKeyword":"硅溶胶"},{"id":"14e0b634-aa76-4d6f-8bc1-8189f37999c4","keyword":"半互穿网络","originalKeyword":"半互穿网络"},{"id":"48920cb0-99ae-4c0f-b220-25320c9481fd","keyword":"交联剂","originalKeyword":"交联剂"},{"id":"19120aa8-5bec-470f-aab8-5730638514df","keyword":"环保水性涂料","originalKeyword":"环保水性涂料"}],"language":"zh","publisherId":"tlgy201303010","title":"聚乙烯醇硅溶胶系水性建筑涂料","volume":"43","year":"2013"},{"abstractinfo":"报道了以聚乙烯醇(PVA)为起始物制备线型碳的研究结果.制备过程类似于炭纤维制备过程中的预氧化工艺,在氧和惰性气体比例适当的条件下,聚乙烯醇在反应釜中梯度升温,以便逐步脱水、氧化脱氢,并保持其原来的晶型.研究了聚乙烯醇在加压下脱水、氧化脱氢制备线型碳的反应条件.产品用红外光谱、激光拉曼光谱和X-射线衍射表征,并与已报道的结果比较,表明产品为β型(累积双键型)线型碳.产品的X-射线衍射结果与原料聚乙烯醇几乎一样,证明产品保持了原料的晶体构型.本合成法可能成为适用的线型碳合成的新途径,并提出了一个可能的反应机理.","authors":[{"authorName":"王世华","id":"cec099c9-9704-481b-8abb-4c3f39766286","originalAuthorName":"王世华"},{"authorName":"任大成","id":"2fdb3008-4d3e-4919-afca-6db56b20bf5b","originalAuthorName":"任大成"}],"doi":"10.3969/j.issn.1007-8827.2005.01.002","fpage":"8","id":"42c3730f-7be3-4374-81aa-741ee790827e","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"de4d0361-ee02-4066-a9c4-d1c4057dc81c","keyword":"线型碳","originalKeyword":"线型碳"},{"id":"2e7b92f5-5aeb-480a-ad18-16d309919415","keyword":"制备","originalKeyword":"制备"},{"id":"e752f9a9-07c6-48b4-94fc-8e5fd2d84d5b","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"}],"language":"zh","publisherId":"xxtcl200501002","title":"聚乙烯醇脱水-氧化脱氢制备线型碳","volume":"20","year":"2005"},{"abstractinfo":"以亲水性的聚乙烯醇为原料,采用机械涂敷法制备复合纳滤膜.考查了基膜、聚乙烯醇的浓度、交联剂的浓度及配比、涂层厚度、交联时间以及热处理等对膜分离性能的影响,确定了最终制备条件.在一定的温度和湿度条件下,在截留相对分子质量为100 000的基膜上,通过5%的聚乙烯醇溶液与1%的戊二醛的交联反应,研制了截留相对分子质量为600的PVA复合纳滤膜.","authors":[{"authorName":"卞晓锴","id":"ff046b9c-9b81-48fe-930c-5ff75891d760","originalAuthorName":"卞晓锴"},{"authorName":"施柳青","id":"3955361b-e6dd-4781-8c57-0174da58fb12","originalAuthorName":"施柳青"},{"authorName":"梁国明","id":"b41d8dca-0b6c-4952-862b-9c0569128ac3","originalAuthorName":"梁国明"},{"authorName":"陆晓峰","id":"3913e739-b634-4984-beca-c147046f41da","originalAuthorName":"陆晓峰"}],"doi":"10.3969/j.issn.1007-8924.2004.02.003","fpage":"12","id":"847a97b7-5303-44df-af67-a6383941c301","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"6127198a-9f8e-4465-a8e4-1b71e60062ad","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"8dbc0327-88ad-40c5-8822-4f4668387a07","keyword":"涂敷法","originalKeyword":"涂敷法"},{"id":"118cc15b-d7c7-43df-b85f-c0489ad6663b","keyword":"复合纳滤膜","originalKeyword":"复合纳滤膜"},{"id":"05612e91-290c-42ec-98fb-37fffae05611","keyword":"膜制备","originalKeyword":"膜制备"}],"language":"zh","publisherId":"mkxyjs200402003","title":"聚乙烯醇复合膜的制备","volume":"24","year":"2004"},{"abstractinfo":"直接甲醇质子交换膜燃料电池(DMFC)中甲醇的穿透问题是阻碍其发展的瓶颈.为提高膜的阻醇性能,采用在渗透蒸发领域广泛使用且具有良好分离效果的聚乙烯醇(PVA)为原料,制备了热处理PVA膜,对其阻醇及质子导电能力进行了研究.PVA膜的阻醇效果较目前在DMFC中广泛使用的Nafion全氟磺酸膜有明显提高,但其自身不具有质子导电能力,需外加电解质溶液以提高其电导率.","authors":[{"authorName":"吴洪","id":"4c373132-4619-46b2-8dfe-829b30dfe07d","originalAuthorName":"吴洪"},{"authorName":"王宇新","id":"bd469316-12a2-4754-9ad4-b803eaf291a0","originalAuthorName":"王宇新"},{"authorName":"王世昌","id":"a074f18c-d206-4032-a244-1b2ea6d43868","originalAuthorName":"王世昌"}],"doi":"","fpage":"172","id":"d1c3ba1e-16d1-4391-bce1-6dad415e19ef","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"0025fe79-ba81-4b4e-8ef5-c11f1e2a11c9","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"892dc354-39a1-45a6-95c8-b286499e4a8a","keyword":"阻醇性能","originalKeyword":"阻醇性能"},{"id":"669d8025-3a00-4d06-92b7-7839c176a977","keyword":"质子导电膜","originalKeyword":"质子导电膜"},{"id":"190247d1-84cf-49a1-8404-e2a0fc8b80c2","keyword":"直接甲醇燃料电池","originalKeyword":"直接甲醇燃料电池"}],"language":"zh","publisherId":"gfzclkxygc200302044","title":"聚乙烯醇膜的阻醇及导电性能研究(Ⅰ)热处理聚乙烯醇膜","volume":"19","year":"2003"},{"abstractinfo":"聚乙烯醇(PVA)是一种常用的酶固定化载体材料,通过一定的工艺手段对其进行改性后能满足不同性质酶的固定化需要.主要介绍了通过物理或化学改性的手段制备聚乙烯醇基酶固定化载体材料,即聚乙烯醇凝胶胶囊、聚乙烯醇冻凝胶、聚乙烯醇网络结构材料、聚乙烯醇基复合材料薄膜、聚乙烯醇电纺丝材料等,并简要评述了这些材料对相应的固定化酶活性和使用稳定性的影响.","authors":[{"authorName":"熊丽","id":"6b81fecc-69c8-4e7b-9048-32790d9f61b3","originalAuthorName":"熊丽"},{"authorName":"陈红","id":"53977e65-ab0e-49dd-95f9-67b170e543b9","originalAuthorName":"陈红"},{"authorName":"谢浩","id":"27678e51-a33c-44d3-9f17-bc85ec2bdf24","originalAuthorName":"谢浩"}],"doi":"","fpage":"77","id":"6b4af2fc-0ec7-4681-b243-82d0a9569ec9","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a0efd02a-eb9e-4745-a36f-0b9769b93aa2","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"205c17dc-2ed8-4047-b0b8-6402c52e7e9a","keyword":"固定化","originalKeyword":"固定化"},{"id":"d91c13f9-41f7-4d66-8309-2edfe80f1f55","keyword":"酶活性","originalKeyword":"酶活性"}],"language":"zh","publisherId":"cldb201011017","title":"聚乙烯醇对生物酶的固定化研究进展","volume":"24","year":"2010"},{"abstractinfo":"采用流延法制备出聚乙烯醇偏光膜.并用紫外可见分光光度仪对含碘及碘、镍、钴偏光膜的光学性能进行了研究.结果表明,偏光膜中加入镍、钴后,偏光膜的单片透光率增加,单片偏光系数及组合偏光率增加.垂直组合时,泄漏光的波峰值左移.","authors":[{"authorName":"左亚曼","id":"5a70bbc3-b51d-44ac-bc30-fe5f99b6d216","originalAuthorName":"左亚曼"},{"authorName":"邱万奇","id":"87b5c7de-9d46-4140-a34e-129109f02d90","originalAuthorName":"邱万奇"},{"authorName":"刘正义","id":"4ec1cd95-ecab-456d-a33f-c11b80c92a95","originalAuthorName":"刘正义"},{"authorName":"龚建勋","id":"2af7b824-c39b-4f8e-a721-b1dc62da1fc9","originalAuthorName":"龚建勋"}],"doi":"","fpage":"212","id":"a8eee78c-97f4-429e-9e96-3f2740067765","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"ab55dcf1-fa02-40ae-b233-0318ced81792","keyword":"偏光膜","originalKeyword":"偏光膜"},{"id":"db8e0f6d-9700-4469-8efc-5d5b993d7a81","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"81fce156-4f23-4e81-8fd3-2d2d3d2f3e67","keyword":"偏光率","originalKeyword":"偏光率"}],"language":"zh","publisherId":"gfzclkxygc200503053","title":"聚乙烯醇偏光膜的制备与评价","volume":"21","year":"2005"},{"abstractinfo":"研究了水溶性高分子聚乙烯醇(PVA)的生物降解性及其影响因素.结果表明,PVA的分子量、结晶度对其生物降解性具有决定作用.通过等离子体作用或氧化处理,可在PVA分子上引入>C=O、-O=C-O、-COOH等基团,从而提高PVA的生物降解性和降解速率.","authors":[{"authorName":"刘白玲","id":"e1a9191b-12eb-4154-b718-01fe2b5dc895","originalAuthorName":"刘白玲"},{"authorName":"曾祥成","id":"0a29b91f-e486-4982-8580-f5fb83827dbb","originalAuthorName":"曾祥成"},{"authorName":"杨金华","id":"39da780f-23ef-4ef7-942a-7ddc0b5e3a13","originalAuthorName":"杨金华"},{"authorName":"贾艳伟","id":"df9fdcbf-9786-4abf-ac75-eef2d5d0e065","originalAuthorName":"贾艳伟"},{"authorName":"张颖","id":"cc070005-08e7-409e-a8e7-9501a955a2ed","originalAuthorName":"张颖"},{"authorName":"李坤福","id":"7b63f190-1100-4fbd-ba9b-9712d7a2913b","originalAuthorName":"李坤福"}],"doi":"10.3321/j.issn:1005-3093.2000.z1.024","fpage":"108","id":"a25fe8d1-3304-4be8-b9cf-cb4ee978b4fd","issue":"z1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"d2280a57-fa30-449b-b8e9-080c5512a77d","keyword":"高分子材料","originalKeyword":"高分子材料"},{"id":"a56494d5-3c03-43af-a5af-ab8cd8489f81","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"4460080f-e18a-45c5-80d7-e60e3986a089","keyword":"生物降解","originalKeyword":"生物降解"},{"id":"401f9ca5-efb5-46ea-8638-ec38fa848032","keyword":"等离子体处理","originalKeyword":"等离子体处理"}],"language":"zh","publisherId":"clyjxb2000z1024","title":"聚乙烯醇生物降解的影响因素","volume":"14","year":"2000"}],"totalpage":4248,"totalrecord":42479}