欢迎登录材料期刊网

材料期刊网

高级检索

对含铒铝合金板材进行不同工艺的轧制及热处理,得到了具有不同织构的铝合金板材,再通过中心裂纹板材的高周疲劳试验,研究了织构对合金疲劳裂纹扩展的影响.结果表明:合金板材中织构的含量与板材轧制变形量及退火温度有关;板材中疲劳裂纹总是倾向于沿Schmid因子较大的方向扩展;板材中织构越多,则晶粒间取向差角越小,疲劳裂纹偏折越小,裂纹扩展路径越短,疲劳裂纹扩展速率越快;板材中织构越少,晶粒间取向差角越大,疲劳裂纹偏折越厉害,裂纹扩展路径越长,疲劳裂纹扩展速率降低.

参考文献

[1] 彭金波,康国政,刘宇杰,卢福聪,陈辉.5083H111轧制铝合金的低周疲劳行为[J].机械工程材料,2015(01):39-41,45.
[2] 徐雪峰,童国权.5083铝合金在400℃的超塑性变形行为和硬化特征[J].机械工程材料,2009(07):45-47,51.
[3] 葛永成;徐雪峰;张杰刚 .5083铝合金的高温应变速率循环超塑性[J].机械工程材料,2014,38(8):97-100.
[4] BROSI J K;LEWANDOWSKI J J .Delamination of a sensitized commercial A1-Mg alloy during fatigue crack growth[J].Scripta Materialia,2010,63(8):799-802.
[5] P.S. Pao;H.N. Jones;S.F. Cheng .Fatigue crack propagation in ultrafine grained Al-Mg alloy[J].International Journal of Fatigue,2005(10/12):1164-1169.
[6] C. Watanabe;R. Monzen;K. Tazaki .Effects of Al_3Sc particle size and precipitate-free zones on fatigue behavior and dislocation structure of an aged Al-Mg-Sc alloy[J].International Journal of Fatigue,2008(4):635-641.
[7] RODER O;WIRTZ T;GYSLER A et al.Fatigue properties of A1-Mg alloys with and without scandium[J].Material Science and Engineering:A,1997,234:181-184.
[8] Fuller CB.;Krause AR.;Dunand DC.;Seidman DN. .Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):8-16.
[9] LI M J;PAN Q L;WANG Y et al.Fatigue crack growth behavior of A1-Mg-Sc alloy[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2014,598:350-354.
[10] LI M J;PAN Q L;SHI Y J et al.Microstructure dependent fatigue crack growth in Al-Mg-Sc alloy[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2014,611:142-151.
[11] 杨军军,聂祚仁,金头男,阮海琼,左铁镛.稀土铒在Al-Zn-Mg合金中的存在形式与细化机理[J].中国有色金属学报,2004(04):620-626.
[12] S.P.Wen;Z.B. Xing;H. Huang;B.L. Li;W.Wang;Z.R. Nie .The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2009(1/2):42-49.
[13] Mu, P.;Aubin, V.;Alvarez-Armas, I.;Armas, A..Influence of the crystalline orientations on microcrack initiation in low-cycle fatigue[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:45-53.
[14] T.ZHAI;A.J.WILKINSON .A CRYSTALLOGRAPHIC MECHANISM FOR FATIGUE CRACK PROPAGATION THROUGH GRAIN BOUNDARIES[J].Acta materialia,2000(20):4917-4927.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%