欢迎登录材料期刊网

材料期刊网

高级检索

利用扫描电子显微镜获取了 Ti-6Al-4V 双相钛合金的显微组织,然后结合图像处理、几何建模等技术建立了基于显微组织的代表性体积单元(RVE)有限元模型;利用 ABAQUS 有限元软件对 RVE 进行了拉伸时的微观应力和应变有限元模拟,并采用单轴拉伸试验进行了验证。结果表明:RVE 的应力-应变曲线与试验结果吻合得很好,说明所建立的 RVE 有限元模型是准确的;在外加载荷作用下,微观应力和应变的分布不均匀,最大应力存在于β相中,最大塑性应变则出现在α相中,在α/β相界面区域发生应力和塑性应变的较大波动;应变局部化主要在靠近α/β相界面的α相内出现,随之形成的塑性应变失效带在α相中扩展。

The microstructure of a two-phase Ti-6Al-4V alloy was obtained by scanning electron microscope, and then the finite element model of representative volume element (RVE ) was established based on the microstructure by the combination of image processing and geometric modeling methods.The micro stresses and strains of RVE were simulated by the finite element software of ABAQUS and verified by the uniaxial tension test. The results show that the simulated stress-strain curve of RVE was in good agreement with the measured result, indicating the accuracy of the established RVE finite element model.Under the outer loads,the distributions of micro stresses and strains were inhomogeneous.The maximum stress existed inβphase while the maximum plastic strain occurred in α phase,and a relatively high fluctuation of the stresses and plastic strains occured near α/βinterface.Plastic strain localization mainly occurred in αphase close to α/βinterface and the following plastic strain failure band extended in αphase.

参考文献

[1] Sun Zhichao;Yang He.Microstructure and mechanical properties of TA15 titanium alloy undermulti-step local loading forming[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):184-192.
[2] 刘洪涛;王路平;邓长城.钛合金表面镀镍层的摩擦磨损特性[J].机械工程材料,2013(2):46-48.
[3] Lutjering G..Influence of processing on microstructure and mechanical properties of (alpha+beta) titanium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19981/2(1/2):32-45.
[4] 任淮辉;李旭东.钛合金微结构力学计算与虚拟失效分析[J].郑州大学学报(工学版),2009(1):43-47.
[5] Bridier, F;McDowell, DL;Villechaise, P;Mendez, J.Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading[J].International Journal of Plasticity,20096(6):1066-1082.
[6] X. Sun;K.S. Choi;W.N. Liu;M.A. Khaleel.Predicting failure modes and ductility of dual phase steels using plastic strain localization[J].International Journal of Plasticity,200910(10):1888-1909.
[7] S. Katani;F. Madadi;M. Atapour;S. Ziaei Rad.Micromechanical modelling of damage behaviour of Ti-6Al-4V[J].Materials & design,2013Aug.(Aug.):1016-1021.
[8] 李宇罡;王斐霏;李险峰;王浩伟;苏跃增.纳米颗粒增强金属基复合材料微结构有限元模型研究[J].材料导报,2011(14):134-138,143.
[9] Yoichi Yamashita;Yusuke Ueda;Hiroshi Kuroki;Masaharu Shinozaki.Fatigue life prediction of small notched Ti-6A1-4V specimens using critical distance[J].Engineering Fracture Mechanics,20109(9):1439-1453.
[10] H. Nakamura;M. Takanashi;T. Itoh;M. Wu;Y. Shimizu.Fatigue crack initiation and growth behavior of Ti-6Al-4V under non-proportional multiaxial loading[J].International Journal of Fatigue,20117(7):842-848.
[11] K.S. Choi;W.N. Liu;X. Sun.Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions[J].Acta materialia,20098(8):2592-2604.
[12] ZHAO Xiqing;ZANG Xinliang;WANG Qingfeng;Park Joongkeun;YANG Qingxiang.Numerical simulation of the stress-strain curve and the stress and strain distributions of the titanium-duplex alloy[J].稀有金属(英文版),2008(05):463-467.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%