欢迎登录材料期刊网

材料期刊网

高级检索

以不同添加量的十六烷基三甲基溴化铵(CTMAB)、N-聚乙烯吡咯烷酮(PVP)以及两者的混合物为分散剂,以自来水、去离子水、膜处理水为分散介质,在不同超声分散时间下分别制备得到了不同的纳米TiN流体,研究了铜片在这些流体中的腐蚀行为。结果表明:当以 CTMAB 为分散剂时能促进铜片的腐蚀,铜片腐蚀速率随 CTMAB 含量的增加而增大,随着超声分散时间的延长先急剧下降,当超过8 min后变化较小,最佳超声分散时间为8 min;当以 PVP 为分散剂时能抑制铜片的腐蚀,铜片的腐蚀速率随着PVP含量的增加而减小,随着超声分散时间的延长先增后降,最佳超声分散时间为6~8 min;当以自来水为分散介质时铜片的腐蚀速率最大,其次为以去离子水为分散介质的,以膜处理水为分散介质的最小。

With different additions of hexadecyltrimethylammonium bromide(CTMAB),N-vinyl pyrrolidone (PVP ) and their mixture as dispersant, with water, deionized water and embrane-treated water as disperse medium, different TiN nanofluids were prepared under conditions of different ultrasonic dispersion time respectively.And then the copper corrosion behavior in the TiN nanofluid was studied.The results show that the copper corrosion was accelerated with CTMAB as dispersant.The copper corrosion rate increased with the increase of with CTMAB content,and first decreased rapidly with the elongation of ultrasonic dispersion time then changed little over 8 min.The optimum ultrasonic dispersion time was 8 min.the copper corrosion was inhibited with PVP dispersant.The copper corrosion rate decreased with the increase of PVP content,and first increased then decreased with the elongation of ultrasonic dispersion time.The optimum ultrasonic dispersion time was 6-8 min.With water as disperse medium,the copper corrosion rate was the largest,followed by the disperse medium of deionized water, and that with embrane-treated water as disperse medium was minimum.

参考文献

[1] Nikkam, N.;Saleemi, M.;Toprak, M.S.;Li, S.;Muhammed, M.;Haghighi, E.B.;Khodabandeh, R.;Palm, B..Novel nanofluids based on mesoporous silica for enhanced heat transfer[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,201111(11):6201-6206.
[2] Huber P.;Manova D.;Mandl S.;Rauschenbach B..Formation of TiN, TiC and TiCN by metal plasma immersion ion implantation and deposition[J].Surface & Coatings Technology,20030(0):1243-1247.
[3] Didziulis SV.;Butcher KD.;Perry SS..Small cluster models of the surface electronic structure and bonding properties of titanium carbide, vanadium carbide, and titanium nitride[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,200324(24):7766-7781.
[4] B. Souvereyns;K. Elen;C. De Dobbelaere.Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles[J].Chemical engineering journal,2013:135-144.
[5] Yan-jun Chen;Ping-yang Wang;Zhen-hua Liu.Application of water-based SiO_2 functionalized nanofluid in a loop thermosyphon[J].International Journal of Heat and Mass Transfer,20131/2(1/2):59-68.
[6] 于英仪;徐教仁;刘思林;滕荣厚;王新林.使用抗氧化剂提高氮化铁磁性液体的抗氧化稳定性[J].粉末冶金工业,2003(3):24-26.
[7] 于东博,张洪斌.暖通空调(HVAC)用低温热流体的腐蚀性研究[C].第五届全国腐蚀大会论文集,2009:1-11.
[8] 董林;陈懿.离子型化合物与氧化物载体表面相互作用的研究-"嵌入模型"及其应用[J].无机化学学报,2000(2):250-260.
[9] 刘守军;冯博洪;贺晨霞;刁红亮;张瑞东.聚乙烯吡咯烷酮对炭黑分散体流变性的影响[J].太原理工大学学报,2013(2):138-141.
[10] A. M. Rashidi;M. Paknezhad;M. R. Mohamadi-Ochmoushi;M. Moshrefi-Torbati.Comparison of erosion, corrosion and erosion-corrosion of carbon steel in fluid containing micro- and nanosize particles[J].Tribology - Materials, Surfaces & Interfaces,20133(3):114-121.
[11] 欧阳鑫望;吴张永;莫子勇;王娴;王娟.水基纳米TiN流体介质颗粒分散性研究[J].硅酸盐通报,2015(6):1659-1663.
[12] 欧阳鑫望;吴张永;莫子勇;王娴;王娟;杨文勇.水基纳米TiN流体粘度及流变特性的研究[J].材料导报,2015(8):83-86.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%