欢迎登录材料期刊网

材料期刊网

高级检索

采用悬浮冷坩埚熔炼法制备了不同碳含量的FeCoCrNiMnCx(x 为0,0.1,0.2,0.3,0.4)高熵合金,研究了碳含量对其显微组织、力学性能和耐蚀性能的影响.结果表明:FeCoCrNiMnCx高熵合金具有典型的树枝晶组织;随着碳含量增加,Cr7 C3析出相增多,尺寸增大,合金的硬度增大,强度呈先增后减的变化规律,当x=0.3时,合金的抗拉强度最高,为665 MPa;在质量分数为3.5%的NaCl溶液中,合金的自腐蚀电流密度随着碳含量增加而减小,FeCoCrNiMnC0.4合金具有最佳的耐蚀性能.

High entropy alloys FeCoCrNiMnCx(x is 0,0.1,0.2,0.3,0.4)with different carbon contents were prepared by cold crucible smelting method,and effects of carbon content on microstructure,mechanical properties and corrosion resistance of the alloys were studied.The results show that high entropy alloys FeCoCrNiMnCx had the typical dendrite structure.With the increase of carbon content,the number and size of precipitate Cr7 C3 increased,the hardness increased and the strength increased and then decreased.The maximum tensile strength of the alloy was up to 665 MPa when x=0.3.In 3.5wt% NaCl solution,with the increase of carbon content,the corrosion current density of the alloys decreased,and the alloy FeCoCrNiMnC0.4 owned the best corrosion resistance.

参考文献

[1] 李安敏;张喜燕.多主元高熵合金的研究进展[J].材料导报,2007(11):56-59.
[2] Jien-Wei Yeh;Swe-Kai Chen;Su-Jien Lin;Jon-Yiew Gan;Tsung-Shune Chin;Too-Tsung Shun;Chun-Huei Tsau;Shou-Yi Chang.Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J].Advanced Engineering Materials,20045(5):299-303.
[3] 陈敏;刘源;李言祥;陈祥.多主元高熵合金AlTiFeNiCuCrx微观结构和力学性能[J].金属学报,2007(10):1020-1024.
[4] Yong Zhang;Ting Ting Zuo;Zhi Tang;Michael C. Gao;Karin A. Dahmen;Peter K. Liaw;Zhao Ping Lu.Microstructures and properties of high-entropy alloys[J].Progress in materials science,2014Apr.(Apr.):1-93.
[5] 尚建路;程从前;王锐;祝志超;赵杰.AlCrFeNi多主元高熵合金的高温性能[J].机械工程材料,2014(2):72-75,104.
[6] 李安敏;张喜燕;刘乐林;郑良杰.退火对AlCrFeCoNiCU高熵合金组织与性能的影响[J].机械工程材料,2012(07):14-16,49.
[7] 蔡建宾;吴宇建;张冬冬;戴品强.Al0.5CoCrFeNiBx多主元高熵合金的组织结构和力学性能[J].稀有金属与硬质合金,2011(4):37-40.
[8] 王智慧;秦晓婷;贺定勇;崔丽;蒋建敏;周正.等离子熔覆CoCrFeMnNiCx高熵合金的组织结构[J].中国表面工程,2014(4):64-69.
[9] F. Otto;A. Dlouhy;Ch. Somsen.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J].Acta materialia,201315(15):5743-5755.
[10] Gludovatz, Bernd;Hohenwarter, Anton;Catoor, Dhiraj;Chang, Edwin H.;George, Easo P.;Ritchie, Robert O..A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014Sep.5 TN.6201(Sep.5 TN.6201):1153-1158.
[11] Chi-Ming Lin;Hsuan-Han Lai;Jui-Chao Kuo.Effect of carbon content on solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys[J].Materials Characterization,201112(12):1124-1133.
[12] Akira Takeuchi;Akihisa Inoue.Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element (Overview)[J].Materials transactions,200512(12):2817-2829.
[13] Toda-Caraballo, Isaac;Rivera-Diaz-del-Castillo, Pedro E. J..Modelling solid solution hardening in high entropy alloys[J].Acta materialia,2015:14-23.
[14] J.Y. He;W.H. Liu;H. Wang.Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J].Acta materialia,20141(1):105-113.
[15] 史一功;张铁邦;寇宏超;李健.AlCoCrFeNiCu高熵合金的电化学腐蚀性能研究[J].热加工工艺,2011(18):1-3,7.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%