欢迎登录材料期刊网

材料期刊网

高级检索

采用光致发光晶向识别技术分辨多晶硅片晶向的分布情况,通过纳米压痕试验测试多晶硅片在不同晶向上的弹性模量;然后利用有限元方法建立包含晶粒尺寸和晶向分布信息的多晶硅片有限元模型,将纳米压痕试验测得的不同晶向的弹性模量带入此模型,模拟得到了不同晶粒尺寸和晶向分布下多晶硅片的弯曲应力,最后通过三点弯曲试验对模拟结果进行了验证。结果表明:多晶硅片在不同晶向上的弹性模量和硬度不同;晶向分布会影响多晶硅片的最大弯曲应力和最大挠度的位置,晶粒形状会影响多晶硅片的最大弯曲应力;减小晶粒尺寸可以降低多晶硅片的最大弯曲应力;三点弯曲试验验证了所建模型的正确性。

The photoluminescence (PL ) technology was used to identify the crystal orientation of the polycrystalline silicon wafer, the elastic modulus of polycrystalline silicon wafer in different orientations was measured through the nano-indentation experiment.The finite element program was used to establish the polycrystalline silicon wafer finite element model containing the information of grain size and grain orientation,and then the elastic modulus got from the nano-indentation experiment were inputted to the model to obtain the bending strength of polycrystalline silicon wafer with different grain sizes and grain orientation distributions;the simulation results were verified by three-point bending experiment.The results show that elastic modulus and hardness of polycrystalline silicon wafter in different grain orientation distributions are different.The maximum bending stress value and the maximum stress position of the polycrystalline silicon wafer are affected by crystal orientation distribution.Grain shapes will affect the maximum bending stress.Reducing the grain size can reduce the maximum bending stress.The model’s correction is verified by the three-point bending experiment.

参考文献

[1] Cao, Fang;Chen, Kexun;Zhang, Jingjiao;Ye, Xiaoya;Li, Jianjiang;Zou, Shuai;Su, Xiaodong.Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2015:132-138.
[2] Bruton TM..General trends about photovoltaics based on crystalline silicon[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,20021/4(1/4):3-10.
[3] Brun, Xavier F.;Melkote, Shreyes N..Analysis of stresses and breakage of crystalline silicon wafers during handling and transport[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,20098(8):1238-1247.
[4] Popovich, V.A.;Yunus, A.;Janssen, M.;Richardson, I.M.;Bennett, I.J..Effect of silicon solar cell processing parameters and crystallinity on mechanical strength[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,20111(1):97-100.
[5] I. Paul;B. Majeed;K. M. Razeeb.Statistical fracture modelling of silicon with varying thickness[J].Acta materialia,200615(15):3991-4000.
[6] 解希玲;谭毅;李佳艳;董伟;刘艳娇;邹清川.腐蚀时间对多孔硅层形貌及多晶硅性能的影响[J].机械工程材料,2011(09):58-60,84.
[7] 李世杰 .多晶硅太阳能电池酸腐蚀制绒研究[D].北京交通大学,2012.
[8] W.C. Oliver;G.M. Pharr.Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J].Journal of Materials Research,20041(1):3-20.
[9] 郭荻子;林鑫;赵永庆;曹永青.纳米压痕方法在材料研究中的应用[J].材料导报,2011(13):10-14,24.
[10] Ding Jianning;MENG Yonggang;Wen Shizhu.MECHANICAL PROPERTIES AND ANTIWEARABILITY STUDIES OF MULTILAYER THIN COATINGS ON CUTTING TOOLS[J].机械工程学报(英文版),2000(02):102-107.
[11] 路君;曾小勤;丁文江.晶粒度与合金强度关系[J].轻金属,2008(8):59-64.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%