欢迎登录材料期刊网

材料期刊网

高级检索

对CaO-SiO2-Al2O3-MgO夹杂物熔点的影响因素进行了多尺度分析,利用Factsage模拟了CaO质量分数对CaO-SiO2-Al2O3-MgO夹杂物熔点的影响规律。多尺度分析表明,工位操作(101 m)影响夹杂物成分(10-10 m)的最后可控因素为钙线喂入量。其通过影响局部钢液中钙质量分数(100 m)来改善熔池的动力学条件(10-3 m),改变夹杂物中CaO质量分数(10-10 m)。模拟结果表明,当CaO质量分数为30%时,CaO-SiO2-Al2O3-MgO相图中低熔点区域的比例达到最大。通过实例分析得到了夹杂物控制的工位级效应,表明了对钢液洁净度进行多尺度深入研究的可行性。

It made a multiscale analysis of influence factors on CaO-SiO2-Al2O3-MgO inclusion melting point. The influ-ence of w(CaO) on CaO-SiO2-Al2O3-MgO inclusion melting point was simulated by using Factsage. Multiscale analysis shows that the final controllable factor of unit operational (101 m) influence on inclusions composition (10-10 m) is the calci-um wire feeding amount which improves the dynamic condition of molten pool (10-3 m) through local w([Ca]) in molten steel (100 m),and changes w(CaO) in inclusions (10-10 m). Simulated results show that the percent of low melting point ar-ea in CaO-SiO2-Al2O3-MgO achieves a maximum when w(CaO) is 30%. It makes instance analysis of inclusions control ef-fect in station-csale,which shows the feasibility of further multi-scale research on the cleanliness of molten steel.

参考文献

[1] YANG Shu-feng,LI Jing-she,ZHANG Li-feng,Kent Peaslee,WANG Zai-fei.Behavior of MgO·Al2O3 Based Inclusions in Alloy Steel During Refining Process[J].钢铁研究学报(英文版),2010(07):1-6.
[2] 陈肇友 .从相图剖析炉外精炼渣对MgO-CaO系材料的侵蚀[J].金属学报,1983,19(6):B237.
[3] Beckett JR. .Role of basicity and tetrahedral speciation in controlling the thermodynamic properties of silicate liquids, part 1: The system CaO-MgO-Al2O3-SiO2[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,2002(1):93-107.
[4] 何肖飞,王新华,陈书浩,姜敏,王万军,曾建华.低碱度低氧化铝精炼渣对帘线钢夹杂物控制[J].钢铁,2014(6):30-36.
[5] Surkov, N.V.;Gartvich, Y. .Modeling of deep-seated high-alumina parageneses on the basis of the stability fields of corundum- and spinel-normative assemblages of the system CaO-MgO-Al _2O _3-SiO _2[J].Russian Geology and Geophysics,2012(1):51-61.
[6] 王立峰,张炯明,王新华,王万军.低碱度顶渣控制帘线钢中CaO-SiO2-Al2O3-MgO类夹杂物成分的实验研究[J].北京科技大学学报,2004(01):26-29.
[7] XU Ji-fang,ZHANG Jie-yu,JIE Chang,TANG Lei,CHOU Kuo-chih.Measuring and Modeling of Density for Selected CaO-MgO-Al2O3-SiO2 Slag With Low Silica[J].钢铁研究学报:英文版,2012(07):26-32.
[8] LIU J;GUO M;Jones P T et al.In situ observation of the di-rect and indirect dissolution of MgO particles in CaO-Al2O3-SiO2-based slags[J].Journal of the European Ceramic Society,2007,27(4):1961.
[9] Charpentier J C.Four main objectives for the future of chemical and process engineering mainly concerned by the science and technologies of new materials production[J].Chemical Engineer-ing Journal,2005(107):3.
[10] Lerou JJ.;Ng KM. .CHEMICAL REACTION ENGINEERING - A MULTISCALE APPROACH TO A MULTIOBJECTIVE TASK[J].Chemical Engineering Science,1996(10):1595-1614.
[11] 林腾昌,朱荣.冶金过程中炼钢洁净度控制的时空多尺度结构[J].工业加热,2012(03):34-37.
[12] 刘明忠,王训富,李士琦.冶金过程中的时空多尺度结构及其效应[J].钢铁研究学报,2005(01):10-13.
[13] 王建东,葛昌纯,邹林华,潘波,杨晓峰.AOD炉衬MgO-CaO砖的侵蚀机理[J].耐火材料,2006(03):186-189.
[14] 郑宏光,祝方义,刘涛,蔡磁,师金红,陈伟庆.AOD终渣对镁钙质炉衬侵蚀的实验研究[J].炼钢,2008(02):26-29.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%