根据低温钢筋穿水冷却工艺特点,利用现场实测数据并结合理论分析得到不同规格低温钢筋穿水冷却过程中的对流换热系数。采用MSC Marc有限元软件与现场试制结果对低温钢筋穿水冷却过程进行了研究。研究了冷却水流量、终轧温度、穿水时间等工艺参数对低温钢筋温度场和组织演变的影响。模拟结果表明:当冷却水流量为120 m3/h时,钢筋芯部开始有珠光体转变;当冷却水流量为400 m3/h时,钢筋芯部无铁素体转变;冷却水流量为160~200 m3/h时,所获得的组织为针状铁素体与贝氏体。终轧温度增加50℃,出水冷装置后钢筋表面温度约增加10℃,返红温度约增加30℃;在200 m3/h水流量下冷却1.2 s,终轧温度为1050℃时,其芯部组织为针状铁素体与细小的贝氏体。在相同水压与水流量条件下,随着穿水速度的增加,淬透层深度减小,返红温度增加。
According to the characteristics of water cooling process of cryogenic rebars,convective heat transfer coeffi-cients of cryogenic rebar with different sizes were achieved by means of measured data and theoretical analysis. Based on the industrial trial results,the water cooling process of cryogenic rebar was investigated using MSC. marc finite element software. The effect of parameters,such as water flow,finishing rolling temperature,water cooling time on temperature field and microstructure transformation of cryogenic rebar were studied. The results show that when the cooling water flow is 120 m3/h,pearlitic transformation doesn't occur in the center of steel rebar;when the cooling water flow is 400 m3/h, there is no ferrite transformation in the center of steel rebar;when the cooling water flow is 160-200 m3/h,the center of steel rebar has composite microstructure consisting of acicular ferrite and bainite. When the finishing rolling temperature rises by about 50℃,the surface temperature of steel rebar rises by about 10℃and self-tempering temperature of steel re-bar rises by about 30℃. When cooling water flow is 200 m3/h and cooling time is 1.2 s,the microstructure of steel rebar consists of acicular ferrite and fine bainite in the 1 050℃finishing rolling. Under the condition of same water pressure and water flow,with the increase of finishing rolling velocity,the hardening layer depth decreases, and self-tempering temperature increases.
参考文献
[1] | 骆晓玲,齐长勇,程换新.大型液化天然气储罐的发展研究[J].机械设计与制造,2009(09):255-257. |
[2] | 魏丽艳,柴玉国,刘清梅.LNG产业及用钢综述[J].冶金信息导刊,2011(05):9-15. |
[3] | 艾绍平,张奕,李生怀.大型液化天然气储罐建造工艺[J].石油化工设备,2012(04):60-63. |
[4] | 于志强,盖大伟,胡智勇,汤德松.大型天然液化气低温储罐钢筋网片抗风分析及加固处理[J].工业建筑,2010(11):136-140. |
[5] | 余瑞,应惠清.LNG储罐中低温钢筋网片的安装稳定性能[J].结构工程师,2011(05):73-77. |
[6] | Steven G.Jansto.铌在高强度抗震钢筋生产中的应用[C].2009全国建筑钢筋生产、设计与应用技术交流研讨会论文集,2009:185-192,196. |
[7] | 杨忠民.细晶高强钢筋[C].2009全国建筑钢筋生产、设计与应用技术交流研讨会论文集,2009:125-132. |
[8] | 丁乙,何衢.LNG储罐建造用低温钢筋国产化分析[J].新材料产业,2014(05):55-58. |
[9] | 张国滨,盛艳,魏明军,武学泽,王彦生,刘庆禄.螺纹钢筋穿水冷却时的对流换热系数模型[J].河北理工学院学报,2002(04):32-37. |
[10] | 张鹏,程树森,常崇明,李积鹏,郑跃强.热轧带钢层流冷却过程温度场研究[J].钢铁,2014(10):51-57. |
[11] | 郏启友,徐立寰,潘时升.带肋钢筋穿水冷却温度场数值模拟及应用[J].轧钢,2009(01):36-38. |
[12] | 崔占斌,王倩,崔占辉,范磊,王青峰,高聿为.控冷返红温度对Q460GJE高建钢组织和力学性能的影响[J].钢铁研究学报,2014(11):64-68. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%