欢迎登录材料期刊网

材料期刊网

高级检索

高炉内部复杂恶劣的环境使得料面信息难以直接检测,针对高温粉尘振动强气流冲击的特殊限制,研制了新的基于机械往复摆动的工业雷达高炉料面测量系统,提出了适应于高炉料面回波检测的拟恒虚警门限检测方法,结合能量中心法及3次样条插值,得出了一种计算高炉料面径向料形曲线的有效算法,综合3D成像技术,实现了沿高炉料面径向料形的实时测量与可视化。围绕某钢铁公司2650 m3高炉的典型应用,首次实现了工业雷达测量、数据传输、成像算法、料形分类的完整系统架构。该系统可以在高炉恶劣环境下测量任意截面的料面分布情况,为布料优化控制、高效煤气利用和节能减排提供数据支撑。

Harsh environment in blast furnace poses a huge challenge for direct measurement of burden surface. Under special restrictions of high temperature,dust and strong vibration of air impact,a novel measuring system of burden sur-face in blast furnace which can be used to real-time measuring is developed based on mechanical reciprocating swing ra-dar. This study presented a detection method of quasi constant false alarm threshold which is suitable for the echo detec-tion of burden surface. An effective algorithm to calculate the radial shape curve of burden surface is concluded,in combi-nation with the energy center of gravity method and cubic spline interpolation. The real-time measuring and visualization of the radial shape curve of burden surface is achieved by 3D imaging technology. Aiming at the typical applications of a 2 650 m3 blast furnace in an Iron and steel company for the first time,this system achieved a rounded system architecture of industrial radar measuring,data transfer,imaging algorithm and material shape classification .The system makes it pos-sible to measure the furnace burden distribution of any section under harsh environment in blast furnace. It provides data support for optimization of fabric control,efficient gas utilization,energy conservation and emissions reduction.

参考文献

[1] 经文波,经薇.高炉无料钟布料料面模拟[J].钢铁,2013(02):10-13,22.
[2] 滕召杰,程树森,赵国磊.并罐式无钟炉顶布料料面中心研究[J].钢铁研究学报,2014(6):5-10.
[3] 张寿荣,于仲洁.中国炼铁技术60年的发展[J].钢铁,2014(07):8-14.
[4] Birk M;Marklund O;Medvedev A.Video monitoring of pulver-ized coal injection in the blast furnace[A].Chicago:IEEE,2001:1354.
[5] 徐京义,蔡漳平,高贤成,肖广勇,郝之峰,高征铠.插入式炉内摄象仪在济钢6号高炉的应用[J].钢铁,2002(10):8-12.
[6] Shih-Kang KUO;Wen-Chieh LEE;Shan-Wen DU .Measurement of Blast Furnace Refractory Lining Thickness with a 3D Laser Scanning Device and Image Registration Method[J].ISIJ International,2008(10):1354-1358.
[7] Xianzhong CHEN;Jidong WEI;Ding XU .3-Dimension Imaging System of Burden Surface with 6-radars Array in a Blast Furnace[J].ISIJ International,2012(11):2048-2054.
[8] 高征铠,高泰.高炉可视化与仿真技术的创新和实践[J].中国冶金,2013(02):8-14.
[9] Nilsson E.;Baath L. .Radar Interferometric Measurements With a Planar Patch Antenna Array[J].IEEE sensors journal,2007(7):1025-1031.
[10] Stove A.G. .Linear FMCW radar techniques[J].IEE proceedings.Radar, sonar and navigation,1992(5):343-350.
[11] CHEN Xian-zhong;LIU Feng-mei;HOU Qing-wen.Indus-trial high-temperature radar and imaging technology in blast fur-nace burden distribution monitoring process[A].Bei-jing:IEEE,2009:599.
[12] Bin S;Bas K.Advanced high precision radar gauge for industri-al applications[A].Shanghai:IEEE,2006:1.
[13] 陈先中,尹怡欣,侯庆文,李晓理,马健,王猛.高炉雷达料面测量信号处理系统改进[J].北京科技大学学报,2011(02):215-220.
[14] 丁康,江利旗.离散频谱的能量重心校正法[J].振动工程学报,2001(03):354-358.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%