欢迎登录材料期刊网

材料期刊网

高级检索

为了研究核岛用P280GH钢管热轧成形后的冷却过程组织演变,采用物理模拟方法建立了CCT和TTT相变动力学曲线。结果表明,低冷速会形成粗大铁素体和珠光体,增大冷速可细化低温相组织,当冷速超过10℃/s时即开始出现贝氏体组织。运用叠加原理,基于有限元法,建立了试验钢冷却过程数值模型,分析了?219.1 mm×18.26 mm规格P280GH钢管在空冷和水冷两种冷却过程沿壁厚方向温度场、组织演变规律。结果显示,空冷条件相变组织为均匀的珠光体、无贝氏体和残余奥氏体;水冷条件获得相变组织为马氏体组织,管内外表面体积分数相差3.6%,计算结果与实际热处理工况基本一致。研究结果可为热轧P280GH钢管生产的控冷工艺提供指导。

In order to study the phase transformation of P280GH steel nuclear power tube during cooling process after hot-roll process,the CCT and TTT transformation kinetics curves were measured by using physical simulation method. The results show that coarse ferrite and pearlite form at low cooling rates and the low-temperature microstructure phase can be reduced by increasing the cooling rate. When the cooling rate is more than 10 ℃/s,bainite begins to appear. Based on the superposition principle,the numerical model of the cooling process of the test steel is established by using the finite element method. The temperature field and the evolution of phase transformation along the direction of the wall thickness of the P280GH steel specimen with dimensions of ?219.1 mm ×18.26 mm were analyzed for air cooling and water cooling,respectively. The results show that the microstructure under air cooling condition is homogeneous pearl-ite,and there is no bainite and retained austenite. The microstructure under water cooling condition is martensite,and the difference between the internal surface and the external surface was 3.6%,which is basically consistent with that of the actual heat treatment. The research results can provide guidance for the cooling process of hot rolling P280GH steel pipe production.

参考文献

[1] 刘正东;程世长;唐广波;包汉生;杨钢;干勇.中国电站用钢技术现状和未来发展[J].钢铁,2011(3):1-5.
[2] Qiang Yan;Anjian Wang;Gaoshang Wang;Wenjia Yu;Qishen Chen.Nuclear power development in China and uranium demand forecast: Based on analysis of global current situation[J].Progress in nuclear engergy,20116(6):742-747.
[3] 郭元蓉;刘昊;胡铂;胡茂会.压水堆核电站用无缝钢管P280GH的研制[J].钢管,2011(1):24-28.
[4] 粘志宇.核电站常规岛主要汽水管道材质选择和规格计算[J].吉林电力,2012(05):9-11.
[5] N. Bontcheva;G. Petzov.Microstructure evolution druing metal forming processes[J].Computational Materials Science,20033/4(3/4):563-573.
[6] Yong-Soon Jang;Dae-Cheol Ko;Byung-Min Kim.Application of the finite element method to predict microstructure in the hot forging of steel[J].Journal of Materials Processing Technology,20001/3(1/3):85-94.
[7] Siamak Serajzadeh;Ali Karimi Taheri.An investigation into the effect of carbon on the kinetics of dynamic restoration and flow behavior of carbon steels[J].Mechanics of materials,20037(7):653-660.
[8] 王敏婷;李学通;刘晓东;杜凤山.非调质钢40MnV热变形后冷却相变动力学[J].材料热处理学报,2014(9):49-54.
[9] 惠亚军;于洋;王畅;王林;陈斌;陈瑾.铌-钛微合金化高强钢连续冷却的相变规律[J].钢铁研究学报,2014(12):42-46.
[10] Domanski, Tomasz;Bokota, Adam.The numerical model prediction of phase components and stresses distributions in hardened tool steel for cold work[J].International Journal of Mechanical Sciences,2015:47-57.
[11] 张玉妥;沙孝春;兰勇军;李殿中;李依依.热轧低碳钢不同冷却模式下的相变模拟与验证[J].钢铁,2004(6):55-58.
[12] 孙剑亭 .轴类锻件热处理工艺模拟及试验研究[D].燕山大学,2008.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%