欢迎登录材料期刊网

材料期刊网

高级检索

高锰TWIP钢的高强度、高塑性和高能量吸收能力与其堆垛层错能有关.TWIP效应对应的层错能上、下限值仍未统一,尤其是TWIP向MBIP(微带诱导塑性)转变的临界判据仍有待于深入分析.XRD、TEM和EAM是测定奥氏体层错能最常用的实验方法.同一TWIP钢的层错能及其变化规律存在实验方法的相关性.正规和亚正规溶液模型、Bragg-Williams模型和双亚点阵模型是计算高锰钢层错能的常见模型.对同一TWIP钢来说,不同模型的预测值并不相同,且与实测值也存在差异.铃木效应引起层错能随间隙原子浓度非线性变化,这在计算时是不能忽略的.规范实验方法、提高设备精度和完善热力学模型及其数据库有助于获得准确可靠的层错能值.

参考文献

[1] 马鸣图.先进汽车用钢[M].北京:化学工业出版社,2007
[2] 康永林.现代汽车板工艺及成形理论与技术[M].北京:冶金工业出版社,2009
[3] O. Grassel;G. Frommeyer .Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J].Materials Science and Technology: MST: A publication of the Institute of Metals,1998(12):1213-1217.
[4] Grassel O.;Frommeyer G.;Meyer LW.;Kruger L. .High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application[J].International Journal of Plasticity,2000(10/11):1391-1409.
[5] 李大赵,卫英慧,刘春月,侯利锋,刘东风,崖天燮,胡玉亭.汽车用TWIP钢的基础研究现状[J].钢铁研究学报,2009(02):1-5.
[6] Gr(a)ssel O;Frommeyer G;Derder C et al.Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels[J].Le Journal de Physique Ⅳ,1997,7(C5):383.
[7] 刘国勋.金属学原理[M].北京:冶金工业出版社,1991
[8] 徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1999
[9] 石霖.合金热力学[M].北京:机械工业出版社,1992
[10] Jae-Bok Seol;J.E. Jung;Y.W. Jang .Influence of carbon content on the microstructure,martensitic transformation and mechanical properties in austenite/e-martensite dual-phase Fe-Mn-C steels[J].Acta materialia,2013(2):558-578.
[11] Georg FROMMEYER;Udo BRUX;Peter NEUMANN .Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes[J].ISIJ International,2003(3):438-446.
[12] Sato K;Ichinose M;Hirotsu Y et al.Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe-Mn-Al Alloys[J].ISIJ International,1989,29(10):868.
[13] Allain S;Chateau J P;Bouaziz O et al.Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys[J].Material Science and Engineering,2004,387 A:158.
[14] Hamada AS;Karjalainen LP;Somani MC .The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):114-124.
[15] Vercammen S .Processing and Tensile Behaviour of TWIP Steels:Microstructural and Textural Analysis[D].Leuven,Belgium:Katholieke Universiteit Leuven,2004.
[16] Kyung-Tae Park;Gyosung Kim;Sung Kyu Kim .On the Transitions of Deformation Modes of Fully Austenitic Steels at Room Temperature[J].Metals and Materials International,2010(1):1-6.
[17] Santos, D.B.;Saleh, A.A.;Gazder, A.A.;Carman, A.;Duarte, D.M.;Ribeiro, T.A.S.;Gonzalez, B.M.;Pereloma, E.V. .Effect of annealing on the microstructure and mechanical properties of cold rolled Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(10/11):3545-3555.
[18] G. Dini;A. Najafizadeh;R. Ueji;S.M. Monir-Vaghefi .Improved tensile properties of partially recrystallized submicron grained TWIP steel[J].Materials Letters,2010(1):15.
[19] 徐祖耀 .fcc(γ)→hcp(ε)马氏体相变[J].中国科学:E辑,1997,27(4):289.
[20] Noskva R P;Pavlov V A .Stacking Faults in Nickel Solid Solutions[J].Phys Met and Metall,1962,14(6):86.
[21] Reed R P;Schramm R E .Relationship Between Stacking Fault Energy and X-Ray Measurements of Stacking-Fault Probability and Microstrain[J].Journal of Applied Physics,1974,45(11):4705.
[22] Warren B E.X-Ray Diffraction[M].Addison-Wesley,Reading,1969
[23] 王煜明;许顺生.X射线衍射学进展[M].北京:科学出版社,1986
[24] 漆璿;江伯鸿;徐祖耀 .FeMnSi基合金中层错几率的X衍射线形分析法测定[J].理化检验:物理分册,1998,34(2):14.
[25] Yonghua RONG,Gang He,Zhenghong GUO,Shipu CHEN,T.Y.Hsu.X-ray Peak-Shift Determination of Deformation Fault Probability in Fe-Mn-Si Alloys[J].材料科学技术学报(英文版),2002(05):459-461.
[26] B.X. HUANG;X.D. WANG;L. WANG .Effect of Nitrogen on Stacking Fault Formation Probability and Mechanical Properties of Twinning-Induced Plasticity Steels[J].Metallurgical and materials transactions. A, physical metallurgy and materials science,2008(4):717-724.
[27] Tian X;Li H;Zhang YS .Effect of Al content on stacking fault energy in austenitic Fe-Mn-Al-C alloys[J].Journal of Materials Science,2008(18):6214-6222.
[28] Tian X;Zhang Y .Effect of Si Content on the Stacking Fault Energy in γ-Fe-Mn-Si-C Alloys:Part Ⅰ.X-Ray Diffraction Line Profile Analysis[J].Material Science and Engineering,2009,516A(1):73.
[29] Oh BW.;Kim YG.;Kim YP.;Kim WS.;Hong SH.;Cho SJ. .EFFECT OF ALUMINIUM ON DEFORMATION MODE AND MECHANICAL PROPERTIES OF AUSTENITIC FE-MN-CR-AL-C ALLOYS[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(2):147-156.
[30] Kim J;De Cooman B C .On the Stacking Fault Energy of Fe18 Pct Mn-0.6 Pct C-1.5 Pct Al Twinning-Induced Plasticity Steel[J].Metallurgical and Materials Transactions,2011,42A(4):932.
[31] H. Idrissi;K. Renard;L. Ryelandt .On the mechanism of twin formation in Fe-Mn-C TWIP steels[J].Acta materialia,2010(7):2464-2476.
[32] HE Gang,RONG Yonghua,XU Zuyao.Self-energy and interaction energy of stacking fault in fcc metals calculated by embedded-atom method[J].中国科学E辑(英文版),2000(02):146-153.
[33] 戎咏华,孟庆平,何刚,徐祖耀.Fe-Mn合金层错能的嵌入原子法计算[J].上海交通大学学报,2003(02):171-174.
[34] 何刚,戎咏华,徐祖耀.fcc结构晶体层错的自身能及其交互作用能的嵌入原子法计算[J].中国科学(E辑),2000(01):1-8.
[35] Dumay A;Chateau JP;Allain S;Migot S;Bouaziz O .Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(0):184-187.
[36] A. SAEED-AKBARI;J. IMLAU;U. PRAHL .Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2009(13):3076-3090.
[37] Park, K.-T.;Jin, K.G.;Han, S.H.;Hwang, S.W.;Choi, K.;Lee, C.S. .Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(16/17):3651-3661.
[38] Koyama, M.;Sawaguchi, T.;Lee, T.;Lee, C.S.;Tsuzaki, K. .Work hardening associated with e{open}-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(24):7310-7316.
[39] Asghari, A.;Zarei-Hanzaki, A.;Eskandari, M..Temperature dependence of plastic deformation mechanisms in a modified transformation-twinning induced plasticity steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:150-156.
[40] Peng X;Zhu D;Hu Z et al.Stacking Fault Energy and Tensile Deformation Behavior of High-Carbon Twinning-Induced Plasticity Steels:Effect of Cu Addition[J].Materials and Design,2013,45:518.
[41] McLellan R B .Cell Models for Interstitial Solid Solutions[J].ACTA METALLURGICA,1982,30(1):317.
[42] Ko C;McLellan R B .Thermodynamics of Ternary Nitrogen Austenites[J].ACTA METALLURGICA,1983,31(11):1821.
[43] Breedis J F;Kaufman L .The Formation of hcp and bcc Phases in Austenitic Iron Alloys[J].Metallurgical Transactions,1971,2B(9):2359.
[44] Petrov Y N .Effect of Carbon and Nitrogen on the Stacking Fault Energy of High-Alloyed Iron-Based Austenite[J].Zeitschrift für Metallkunde,2003,94(9):1012.
[45] Petrov Y U N;Yakubtsov I .Thermodynamic Calculation of Stacking Fault Energy for Multicomponent Alloys With F.C.C.Lattice Based on Iron[J].Phys Met Metallogr:USSR,1986,62(2):34.
[46] Nakano, J.;Jacques, P.J. .Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,2010(2):167-175.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%