钢铁研究学报, 2015, 27(4): 19-24. doi: 10.13228/j.boyuan.issn1001-0963.20130493
转炉顶吹过程渣-金-气三相作用特性
李明明 1, , 李强 2, , 邹宗树 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用快速瞬态微型压力测量系统对脉冲激光加热下无水乙醇超急速爆发沸腾过程中液池内压力变化进行了测量,利用傅立叶变换、小波分析等理论工具对该过程的能量与频率特性进行了分析,并对汽泡群行为进行了理论推测.结果发现,爆发沸腾过程中压力信号频率处于MHz量级;在不同阶段气泡群行为具有不同特点.","authors":[{"authorName":"尹铁男","id":"3c6a7e15-7d69-45c9-9694-47e45f57e32e","originalAuthorName":"尹铁男"},{"authorName":"淮秀兰","id":"b7431e51-f85c-4957-bf28-3d3f0396e4b2","originalAuthorName":"淮秀兰"},{"authorName":"闫润生","id":"6897ac4c-413a-4fb5-ab7b-32da7178c75a","originalAuthorName":"闫润生"},{"authorName":"梁世强","id":"c89ead5f-5bf6-4b80-88c7-5b49a7b316a9","originalAuthorName":"梁世强"}],"doi":"","fpage":"999","id":"eeb64f25-6b71-4029-861b-0d98b9dd7e54","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"50dc7225-63e7-4bd6-b609-411e636f3fe6","keyword":"爆发沸腾","originalKeyword":"爆发沸腾"},{"id":"39dbf612-d019-483c-8aea-3af7aad2282a","keyword":"傅立叶分析","originalKeyword":"傅立叶分析"},{"id":"040b16de-da53-4416-8107-b520fec60a44","keyword":"小波分析","originalKeyword":"小波分析"},{"id":"546f773a-11e6-401b-8496-2e74c334a04d","keyword":"压力测量","originalKeyword":"压力测量"}],"language":"zh","publisherId":"gcrwlxb200806025","title":"超急速爆发沸腾的傅立叶与小波分析","volume":"29","year":"2008"},{"abstractinfo":"瞬态高热流加热下饱和液氮会发生爆发沸腾,而对于该过程的特殊传热机理因素,目前还没有相关的深入研究和分析.本文基于实验,在总结沸腾传热机理研究成果的基础上,重点分析了饱和液氮爆发沸腾过程中以汽泡群形态实现热量传递的特殊之处,并进行了理论模拟验证.结果表明,汽泡群内部众多汽泡所发生的破裂收缩行为,会释放潜热并形成热流,成为爆发沸腾独特的传热机理影响因素.","authors":[{"authorName":"董兆一","id":"2f2613ea-1520-4364-9219-b03dc235a8ba","originalAuthorName":"董兆一"},{"authorName":"淮秀兰","id":"b59f3451-83da-4fb5-89fe-f15745e42853","originalAuthorName":"淮秀兰"}],"doi":"","fpage":"641","id":"01e79f8e-f197-4779-8186-ec0aa1016bfd","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"93b48d03-bd80-4962-8312-88ee55051047","keyword":"饱和液氮","originalKeyword":"饱和液氮"},{"id":"d208fec5-9642-4c8c-9ef8-09abf48d9b6c","keyword":"爆发沸腾","originalKeyword":"爆发沸腾"},{"id":"984af419-eee9-4c02-b511-1d592afbf709","keyword":"传热机理","originalKeyword":"传热机理"}],"language":"zh","publisherId":"gcrwlxb200504030","title":"饱和液氮爆发沸腾实验与传热机理分析","volume":"26","year":"2005"},{"abstractinfo":"采用分子动力学模拟方法研究了液氮和水爆发沸腾中均相形核能量转换过程,通过计算系统势能变化分析了热流量和高能分子团尺寸对形核过程能量转换的影响,并分析了水和液氮爆发沸腾形核区别.结果表明,热流量与高能分子团半径的增加都会使系统中的势能转化增加.在模拟后期,水的势能转化趋于平稳,液氮势能转化逐渐升高,这与液氮与水分子之间的相互作用有关.","authors":[{"authorName":"邹玉","id":"601f0b65-0881-4d37-b403-8e9feac220af","originalAuthorName":"邹玉"},{"authorName":"淮秀兰","id":"8f111236-de18-4fa8-bea4-02749f40a7a5","originalAuthorName":"淮秀兰"},{"authorName":"梁世强","id":"376947e5-a06f-40f1-9223-9661c5c9e5c0","originalAuthorName":"梁世强"}],"doi":"","fpage":"992","id":"6459ffac-d1f2-406d-884e-8b5cd52362b4","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4c86673c-3352-487b-a800-f4910f88a3d9","keyword":"爆发沸腾","originalKeyword":"爆发沸腾"},{"id":"493e0e47-0e79-474d-ba6f-e750958a8b94","keyword":"汽泡形核","originalKeyword":"汽泡形核"},{"id":"4e2c7d17-7b96-4493-8d20-4c5a82455f94","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"}],"language":"zh","publisherId":"gcrwlxb200906024","title":"爆发沸腾形核分子动力学模拟","volume":"30","year":"2009"},{"abstractinfo":"分析了难以用经典热力学、动力学理论求液体极限温度的原因,指出了三种汽泡形核率公式的异同点及适用条件,分析表明常规沸腾汽泡压力公式及经典汽泡动力学理论因其过多的理想化假设和简化而不适用超急速爆发沸腾.","authors":[{"authorName":"金仁喜","id":"761ec29b-b16a-4b42-990b-e57dee594634","originalAuthorName":"金仁喜"},{"authorName":"淮秀兰","id":"7d0c5b3d-ea8f-4e02-ab29-e74254fabfac","originalAuthorName":"淮秀兰"},{"authorName":"刘登瀛","id":"2d947a4b-0c41-40c7-b2a4-3d813d470827","originalAuthorName":"刘登瀛"}],"doi":"","fpage":"1013","id":"a1a66317-50f8-4a8f-b39f-84ea601d4e4d","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e9473050-e6de-492a-9475-58083181cbde","keyword":"爆发沸腾","originalKeyword":"爆发沸腾"},{"id":"2d511c9c-4e07-44a4-94e5-33b890a0939a","keyword":"极限温度","originalKeyword":"极限温度"},{"id":"92590200-a117-49fb-80ad-34beebc8c987","keyword":"形核率","originalKeyword":"形核率"},{"id":"97582bc4-bcc3-4f45-8f6b-ad1c6f2202b0","keyword":"汽泡压力","originalKeyword":"汽泡压力"},{"id":"41a89b24-8c92-4fbd-9fe0-6c18a9051c7d","keyword":"汽泡动力学","originalKeyword":"汽泡动力学"}],"language":"zh","publisherId":"gcrwlxb200306033","title":"经典理论对超急速爆发沸腾的适用性","volume":"24","year":"2003"},{"abstractinfo":"超急速爆发沸腾研究具有重大理论与实用价值.本文在实验研究的基础上,建立了脉冲激光作用下超急速爆发沸腾传热数学模型,并采用恰当的数值处理方法进行了数值模拟计算.结果表明,计算与实验结果基本吻合,在超急速爆发沸腾过程中,汽相、液相的升温吸热以及汽化潜热等是影响温度变化的重要因素,实际过程中应综合加以考虑.","authors":[{"authorName":"董兆一","id":"415c7662-725c-415d-9c4c-774571f6fa70","originalAuthorName":"董兆一"},{"authorName":"淮秀兰","id":"1eb06026-0ff0-443d-94e0-e9b22afd6ea2","originalAuthorName":"淮秀兰"},{"authorName":"赵耀华","id":"a66f2fed-64d2-412f-8ab3-66549fd6195a","originalAuthorName":"赵耀华"}],"doi":"","fpage":"667","id":"69ca6e33-d0cd-4003-973a-59ead010abc9","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"db772d19-c28b-4282-a6fe-e0aa68aaa556","keyword":"爆发沸腾","originalKeyword":"爆发沸腾"},{"id":"a9278b92-d2b4-4994-a600-9a9d6afe8c59","keyword":"一维导热方程","originalKeyword":"一维导热方程"},{"id":"a4838b7f-2413-47e7-9bea-4e5b72cdf478","keyword":"数值计算","originalKeyword":"数值计算"}],"language":"zh","publisherId":"gcrwlxb200304037","title":"超急速爆发沸腾传热的实验与理论研究","volume":"24","year":"2003"},{"abstractinfo":"本文以脉冲激光为热源,以高响应、高精度铂薄膜电阻为测温和加热元件,进行了低温工质(液氮)超急速爆发沸腾的实验研究.利用显微放大摄影系统对不同工况的沸腾过程进行了拍照,发现不同系统变量:如试件表面状况、激光参数对低温工质(液氮)超急速爆发沸腾行为有着重要的影响.","authors":[{"authorName":"张秀丽","id":"14c7142e-2ae2-41aa-bd35-ec36d5ae1816","originalAuthorName":"张秀丽"},{"authorName":"董兆一","id":"55385c0f-aeee-49a7-952f-a77120aec502","originalAuthorName":"董兆一"},{"authorName":"淮秀兰","id":"0ac32bdd-f03d-4cda-8da6-91a23d6843a0","originalAuthorName":"淮秀兰"},{"authorName":"李化治","id":"8b6ded51-7d19-4b23-8284-298382a5bb25","originalAuthorName":"李化治"},{"authorName":"刘登瀛","id":"4ddbe01c-49fd-4c2f-841c-564d3906ad2f","originalAuthorName":"刘登瀛"}],"doi":"","fpage":"110","id":"35c89464-ac01-45d9-8840-7d6c34f3a890","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"061785cb-947c-43d1-ba2a-16f5c07b095c","keyword":"系统变量","originalKeyword":"系统变量"},{"id":"c891a1bb-b7e5-45fb-978c-bccd5d2ee4ac","keyword":"液氮","originalKeyword":"液氮"},{"id":"7cb9b73d-0c92-4f31-a069-550a80c6de66","keyword":"超急速爆发沸腾","originalKeyword":"超急速爆发沸腾"}],"language":"zh","publisherId":"gcrwlxb200501031","title":"系统变量对低温环境下超急速爆发沸腾的影响","volume":"26","year":"2005"},{"abstractinfo":"讨论了天体物理环境中爆发性核合成及其与核结构的紧密关系. 用反射不对称壳模型计算了远离稳定线丰中子核148Ba的低能八极转动带, 结果与实验很好符合. 展示了其应用于不稳定核低能态计算的有效性, 以及在核天体物理研究中的应用前景. ","authors":[{"authorName":"陈永寿","id":"b4e82b3e-5dd1-45e3-8915-5f97874e452b","originalAuthorName":"陈永寿"}],"doi":"10.3969/j.issn.1007-4627.2001.03.004","fpage":"147","id":"4ca40255-e43a-4774-93ef-c8f1e0aa3f49","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"f8c1d733-54e3-4a10-92b6-2bfd712e05e8","keyword":"核合成","originalKeyword":"核合成"},{"id":"9aa94171-33cf-4c25-85d7-1ac5e94377dc","keyword":"核结构","originalKeyword":"核结构"},{"id":"7e178ffb-a314-47f6-ae6d-c946301e0faf","keyword":"放射性核束","originalKeyword":"放射性核束"}],"language":"zh","publisherId":"yzhwlpl200103004","title":"爆发性核合成与核结构","volume":"18","year":"2001"},{"abstractinfo":"本文分析了传统沸腾传热学的研究思路和方法,指出自1934年以来的沸腾传热学的研究建立在平均化和线性化的基础上,由此为发展的核态沸腾传热理论和临界热负荷模型在当前都遇到了很大的困难。综述了我们对沸腾传热学新的认识及最新进展,特别是非线性科学与沸腾传热学结合使沸腾传热学的研究焕然一新","authors":[{"authorName":"柴立和","id":"946fa926-d51d-4a39-b992-59447a451b7a","originalAuthorName":"柴立和"},{"authorName":"彭晓峰","id":"4c3f49f2-8d2e-4515-aa75-aa69594f060a","originalAuthorName":"彭晓峰"},{"authorName":"王补宣","id":"cc389497-69cc-43f8-b4c5-8dd612dd366c","originalAuthorName":"王补宣"}],"doi":"","fpage":"605","id":"3b36a239-7af5-4ba4-9712-081f6fba986c","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9e9749dc-3549-4f29-932d-2b660b0b8c7c","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"88f25855-d816-4498-a912-75183b910b83","keyword":"非线性","originalKeyword":"非线性"}],"language":"zh","publisherId":"gcrwlxb200005021","title":"沸腾传热基础理论的拓展","volume":"21","year":"2000"},{"abstractinfo":"本文从团聚(clustering)的分子动力学过程出发,研究微尺度沸腾相变的物理机制.通过分析沸腾系统势能变化趋势,指出核化阶段必然伴随团聚体积的增加,从而导致压力扰动的产生.在微尺度条件下,这种压力扰动将可能主导沸腾系统的相变行为,由此导出相变发生的临界尺度判据,在量级上与实验取得很好的一致.","authors":[{"authorName":"刘冬","id":"875e438b-b34e-4c71-b751-cdfb1df3f624","originalAuthorName":"刘冬"},{"authorName":"彭晓峰","id":"5afc1187-add5-4036-8081-e3fa7c7c024f","originalAuthorName":"彭晓峰"},{"authorName":"王补宣","id":"5da463d4-efa0-4380-83b4-8993924ddc74","originalAuthorName":"王补宣"}],"doi":"","fpage":"191","id":"0ca9ad09-d19a-4e4b-84c7-439f1ccb3f4b","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9af29533-8150-4038-bd22-c44497240e66","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"b473db5d-abc2-4797-a6c6-3ec6b781eabe","keyword":"微尺度","originalKeyword":"微尺度"},{"id":"d8262e0a-cc4b-4e40-a6a9-ff6d6256da2a","keyword":"团聚","originalKeyword":"团聚"},{"id":"b9ebb16d-03b7-4282-b2cc-787502285475","keyword":"压力扰动","originalKeyword":"压力扰动"}],"language":"zh","publisherId":"gcrwlxb200002015","title":"微尺度沸腾的压力扰动模型","volume":"21","year":"2000"},{"abstractinfo":"从理论与实践上较为深入地分析了钛沸腾氯化炉结构,找出了最佳炉型、结构尺寸和炉内衬材料.","authors":[{"authorName":"严东","id":"be01228a-dc18-472c-8c9d-6be298a11951","originalAuthorName":"严东"}],"doi":"10.3969/j.issn.1009-9964.2002.03.006","fpage":"20","id":"6bc13047-addb-4881-86d7-efbfb4aee7c9","issue":"3","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"cef6c9d4-cfee-49a6-b860-624e3dbed23a","keyword":"海绵钛","originalKeyword":"海绵钛"},{"id":"28dc38c5-d8e2-4220-b809-f29ed743d762","keyword":"氯化炉","originalKeyword":"氯化炉"},{"id":"e65944c5-db4b-4e2e-8198-f14dbe9bf60b","keyword":"结构","originalKeyword":"结构"}],"language":"zh","publisherId":"tgyjz200203006","title":"钛沸腾氯化炉结构探析","volume":"","year":"2002"}],"totalpage":50,"totalrecord":499}