欢迎登录材料期刊网

材料期刊网

高级检索

采用旋转弯曲加载方式,评价了择优取向层片组织 Ti-47.5Al-2.5V-1.0Cr-0.2Zr(原子数分数,%)合金的室温高周疲劳性能,并采用扫描电镜对疲劳断口进行了观察和分析.结果显示,实验合金的应力-寿命(S-N)曲线呈现平直形态,符合Basquin方程;其条件疲劳极限为477 MPa,相当于其抗拉强度的83%.断口观察发现,疲劳试样以穿层片解理方式发生断裂.疲劳裂纹主要沿位于试样表面层、与外加应力成30°~90°的层片界面萌生,之后以穿层片方式发生扩展.在同一应力水平下,疲劳寿命随疲劳源尺寸增加而减少,疲劳源尺寸波动是导致疲劳寿命大幅分散的主要原因.

The room-temperature high-cycle fatigue performance of Ti-47.5Al-2.5V-1.0Cr-0.2Zr (at.%)alloy with a preferentially oriented lamellar microstructure has been evaluated by load-controlled rotating bending fatigue tests,and the fracture surfaces have also been observed and analyzed by scanning electron microscopy.The results show that the studied alloy exhibits a flat S-N curve which follows the Basquin equation.The fatigue limit is 477 MPa,which equals to 83% of the ultimate tensile strength.The fracture surface observation proves that the fail-ure of these specimens is caused by a translamellar cleavage mode.Fatigue cracks mostly initiate along lamellar in-terfaces which located at specimens′surface and also have an angle of 30°-90°with the applied stress,and then propagate in a translamellar way.Moreover,at the same stress level,fatigue life decreases with increasing the size of crack initiator,and the large fatigue-life scatter of the studied alloy mainly results from the variability of crack-initiator size.

参考文献

[1] Young-Won Kim.Gamma Titanium Aluminides: Their Status and Future[J].JOM,19957(7):39-41.
[2] 张继;仲增镛.TiAl金属间化合物工程实用化研究与进展[J].中国材料进展,2010(2):9-13.
[3] 张继.铸造钛铝合金组织与力学性能[J].航空材料学报,1998(03):29.
[4] 朱春雷;张熹雯;李胜;张继.铸造TiAl合金定向层片组织的室温拉伸性能和断裂行为[J].稀有金属材料与工程,2014(9):2124-2129.
[5] 骆晨;朱春雷;李海昭;柳学全.铸造TiAl合金定向层片组织持久性能的试验研究[J].稀有金属,2012(5):700-705.
[6] Shiota H.;Ohta Y.;Tokaji K..Influence of lamellar orientation on fatigue crack propagation behavior in titanium aluminide TiAl[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19981/2(1/2):169-175.
[7] Y. Zhou;J.Q. Wang;B. Zhang.High-temperature fatigue property of Ti46A18Nb alloy with the fully lamellar microstructure[J].Intermetallics,2012:7-14.
[8] S. K. Jha;J. M. Larsen;A. H. Rosenberger.The role of competing mechanisms in the fatigue life variability of a nearly fully-lamellar gamma-TiAl based alloy[J].Acta materialia,20055(5):1293-1304.
[9] Huang ZW.;Jones IP.;Bowen P..Transmission electron microscopy investigation of fatigue crack tip plastic zones in a polycrystalline gamma-TiAl-based alloy[J].Philosophical Magazine.A.Physics of condensed matter, defects and mechanical properties,20019(9):2183-2197.
[10] Harding T.S.;Jones J.W..FATIGUE THRESHOLDS OF CRACKS RESULTING FROM IMPACT DAMAGE TO #gamma#-TiAl[J].Scripta materialia,20007(7):623-629.
[11] Kumpfert J.;Dimiduk DM.;Kim YW..EFFECT OF MICROSTRUCTURE ON FATIGUE AND TENSILE PROPERTIES OF THE GAMMA TIAL ALLOY TI-46.5AL-3.ONB-2.1CR-0.2W[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19950(0):465-473.
[12] J. P. Campbell;J. J. Kruzic;S. Lillibridge;K. T. Venkateswara Rao;R. O. Ritchie.On the growth of small fatigue cracks in γ-based titanium aluminides[J].Scripta materialia,19975(5):707-712.
[13] Bowen P.;James AW.;Chave RA..CYCLIC CRACK GROWTH IN TITANIUM ALUMINIDES[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19950(0):443-456.
[14] Kruzic JJ.;Ritchie RO.;Campbell JP..On the fatigue behavior of gamma-based titanium aluminides: Role of small cracks[J].Acta materialia,19993(3):801-816.
[15] K. S. Chan;D. S. Shih.Fundamental aspects of fatigue and fracture in a TiAl sheet alloy[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,19981(1):73-88.
[16] 陆永浩;张永刚;乔利杰;王燕斌;陈昌麒;褚武扬.片层取向对Ti-49at%Al PST晶体断裂机制的影响[J].稀有金属材料与工程,2000(2):128-131.
[17] Ding, Rengen;Li, Hangyue;Hu, Dawei;Martin, Nigel;Dixon, Mark;Bowen, Paul.Features of fracture surface in a fully lamellar TiAl-base alloy[J].Intermetallics,2015:36-42.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%